Skip to main content

Effect of uniaxial stress on energy harvesting, storage and electrocaloric performance of BZT ceramics

Abstract

In this work, a systematic approach of waste (thermal/mechanical) energy harvesting and storage potential is studied in Ba0.85Zr0.15TiO3 (BZT) ceramics. The effect of stress on energy storage density (harvesting/storage) and electrocaloric performance is also studied. For this purpose, polarization–electric field hysteresis loops were recorded at various temperatures and uniaxial compressive stress. The Olsen cycle and electro-mechanical cycle are used for direct waste heat or mechanical energy to electrical energy conversion. A thermal energy-harvesting density of 42 kJ/m3 per cycle was obtained when the Olsen cycle was operated between 296–343 K and 0.25–1.5 MV/m. The electro-mechanical cycle-based energy harvesting is estimated as 78 kJ/m3 under the applied stress of 5–160 MPa and the electric field of 0.25–1.5 MV/m. The energy storage density is found as 39 kJ/m3 at zero stress field and 343 K, which increases to 53 kJ/m3 under the biased stress of 80 MPa in a wide operating temperature range of 296–328 K. It is observed that the high energy storage is a result of the reduction of the hysteresis loss. The electrocaloric temperature is found as 0.16 K and 0.18 K under the 0 and 80 MPa stress fields, respectively. Overall, the reported findings will enrich our understanding of the stress effect on BZT materials, which offers high performance for energy harvesting and storage-based applications. Moreover, this work can be also helpful in improving the energy storage density and electrocaloric effect via stress confinement.

This is a preview of subscription content, access via your institution.

Fig. 1

© 2019 Technische Universität Darmstadt) [43]

Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R.A. Kishore, S. Priya, Materials 11(8), 1433 (2018)

    Article  CAS  Google Scholar 

  2. 2.

    C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 7(12), 3836–3856 (2014)

    Article  Google Scholar 

  3. 3.

    J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Nano Energy 56, 662–692 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    S. Gael, P. Sebastien, G. Daniel, Smart Mater. Struct. 17(1), 015012 (2008)

    Article  CAS  Google Scholar 

  5. 5.

    G. Sebald, D. Guyomar, A. Agbossou, Smart Mater. Struct. 18(12), 125006 (2009)

    Article  CAS  Google Scholar 

  6. 6.

    G. Sebald, E. Lefeuvre, D. Guyomar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(3), 538–551 (2008)

    Article  Google Scholar 

  7. 7.

    W. Tian, T. Zhao, Z. Yang, Compos. Struct. 261, 113326 (2020)

  8. 8.

    S. Patel, A. Chauhan, V. Rojas, N. Novak, F. Weyland, J. Rödel, R. Vaish, Energy Technol. 6(5), 872–882 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    S. Li, H. Nie, G. Wang, N. Liu, M. Zhou, F. Cao, X. Dong, J Mater Chem. C 7(15), 4403–4414 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    I.M. McKinley, S. Goljahi, C.S. Lynch, L. Pilon, J. Appl. Phys. 114(22), 224111 (2013)

    Article  CAS  Google Scholar 

  11. 11.

    I.M. McKinley, F.Y. Lee, L. Pilon, Appl. Energy 126, 78–89 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    I.M. McKinley, L. Pilon, Appl. Phys. Lett. 102(2), 023906 (2013)

    Article  CAS  Google Scholar 

  13. 13.

    H. Nguyen, A. Navid, L. Pilon, Appl. Therm. Eng. 30(14), 2127–2137 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    Y.L. Felix, G. Sam, M.M. Ian, S.L. Christopher, P. Laurent, Smart Mater. Struct. 21(2), 025021 (2012)

    Article  CAS  Google Scholar 

  15. 15.

    A.-S. Siao, I.M. McKinley, C.-K. Chao, C.-C. Hsiao, L. Pilon, J. Appl. Phys. 124(17), 174104 (2018)

    Article  CAS  Google Scholar 

  16. 16.

    L. Pilon, I.M. McKinley, Adv. Rev. Heat Transf. 19, 279–334 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    R.B. Olsen, J.M. Briscoe, D.A. Bruno, W.F. Butler, Ferroelectrics 38(1), 975–978 (1981)

    CAS  Article  Google Scholar 

  18. 18.

    R.B. Olsen, D.A. Bruno, J.M. Briscoe, J. Dullea, Ferroelectrics 59(1), 205–219 (1984)

    CAS  Article  Google Scholar 

  19. 19.

    R.B. Olsen, D.A. Bruno, J.M. Briscoe, J. Appl. Phys. 58(12), 4709–4716 (1985)

    CAS  Article  Google Scholar 

  20. 20.

    R.B. Olsen, D. Evans, J. Appl. Phys. 54(10), 5941–5944 (1983)

    CAS  Article  Google Scholar 

  21. 21.

    J. Hwan Ryul, S.L. Christopher, Smart Mater. Struct. 25(3), 035009 (2016)

    Article  CAS  Google Scholar 

  22. 22.

    K. Razmig, N. Ashcon, P. Laurent, Smart Mater. Struct. 20(5), 055020 (2011)

    Article  CAS  Google Scholar 

  23. 23.

    A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, S. Mohammadi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 693–699 (2009)

    Article  Google Scholar 

  24. 24.

    F. Zhuo, Q. Li, Y. Li, J. Gao, Q. Yan, Y. Zhang, X. Xi, X. Chu, W. Cao, J. Appl. Phys. 121(6), 064104 (2017)

    Article  CAS  Google Scholar 

  25. 25.

    I.M. McKinley, R. Kandilian, L. Pilon, Smart Mater. Struct. 21(3), 035015 (2012)

    Article  CAS  Google Scholar 

  26. 26.

    Q. Zhang, Y. Zhao, X. Hao, J. Phys. Chem. C 119(33), 18877–18885 (2015)

    Article  CAS  Google Scholar 

  27. 27.

    X. Wang, X. Hao, Q. Zhang, S. An, X. Chou, J. Mater. Sci. Mater. Electron. 28(2), 1438–1448 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    A. Navid, L. Pilon, Smart Mater. Struct. 20(2), 025012 (2011)

    Article  CAS  Google Scholar 

  29. 29.

    T.K. Chin, F.Y. Lee, I.M. Mckinley, S. Goljahi, C.S. Lynch, L. Pilon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2373–2385 (2012)

    Article  Google Scholar 

  30. 30.

    J. Fang, H. Frederich, L. Pilon, J. Heat Transf. 132(9), 092701 (2010)

    Article  CAS  Google Scholar 

  31. 31.

    F.Y. Lee, H.R. Jo, C.S. Lynch, L. Pilon, Smart Mater. Struct. 22(2), 025038 (2013)

    CAS  Article  Google Scholar 

  32. 32.

    F. Lee, S. Goljahi, I. McKinley, C.S. Lynch, L. Pilon (2012) Pyroelectric energy harvesting using the olsen cycle on relaxor ferroelectric 8/65/35 PLZT. In ASME 2012 Third International Conference on Micro/Nanoscale Heat Transfer, vol. 54778 (2012), pp. 597–604

  33. 33.

    A. Chauhan, S. Patel, G. Vats, R. Vaish, Energy Technol. 2(2), 205–209 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    R. Sao, G. Vats, R. Vaish, Ferroelectrics 474(1), 1–7 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  CAS  Google Scholar 

  36. 36.

    S. Yao, W. Ren, H. Ji, X. Wu, P. Shi, D. Xue, X. Ren, Z.-G. Ye, J. Phys. D Appl. Phys. 45(19), 195301 (2012)

    Article  CAS  Google Scholar 

  37. 37.

    S. Patel, A. Chauhan, R. Vaish, Solid State Sci. 52, 10–18 (2016)

    Article  CAS  Google Scholar 

  38. 38.

    V.S. Puli, D.K. Pradhan, W. Pérez, R. Katiyar, J. Phys. Chem. Solids 74(3), 466–475 (2013)

    Article  CAS  Google Scholar 

  39. 39.

    M. Acosta, N. Novak, W. Jo, J. Rödel, Acta Mater. 80, 48–55 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, J. Rödel, Phys. Rev. B 91(10), 104108 (2015)

    Article  CAS  Google Scholar 

  41. 41.

    A. Pramanick, W. Dmowski, T. Egami, A.S. Budisuharto, F. Weyland, N. Novak, A.D. Christianson, J.M. Borreguero, D.L. Abernathy, M.R.V. Jørgensen, Phys. Rev. Lett. 120(20), 207603 (2018)

    CAS  Article  Google Scholar 

  42. 42.

    K.M. Sangwan, N. Ahlawat, R.S. Kundu, S. Rani, S. Rani, N. Ahlawat, S. Murugavel, J. Phys. Chem. Solids 117, 158–166 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    F. Weyland, Electrocaloric Cooling Power and Long Term Stability of Barium Zirconate Titanate. Ph.D. Thesis. Darmstadt (Germany), Technische Universität Darmstadt (2019)

  44. 44.

    P. Sateesh, J. Omprakash, G. Kumar, G. Prasad, J Adv. Dielectr. 5(01), 1550002 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    P. Gao, J. Britson, C.T. Nelson, J.R. Jokisaari, C. Duan, M. Trassin, S.-H. Baek, H. Guo, L. Li, Y. Wang, Nat. Commun. 5(1), 1–8 (2014)

    CAS  Google Scholar 

  46. 46.

    D. Damjanovic, Phys. Rev. B 55(2), R649 (1997)

    CAS  Article  Google Scholar 

  47. 47.

    Y. Liu, J.F. Scott, B. Dkhil, Appl. Phys. Rev. 3(3), 031102 (2016)

    Article  CAS  Google Scholar 

  48. 48.

    N. Novak, F. Weyland, G.A. Rossetti Jr., J. Eur. Ceram. Soc. 41(2), 1280–1287 (2021)

    CAS  Article  Google Scholar 

  49. 49.

    A. Chauhan, S. Patel, R. Vaish, Acta Mater. 89, 384–395 (2015)

    CAS  Article  Google Scholar 

  50. 50.

    A. Chauhan, S. Patel, R. Vaish, Energy Technol. 3(2), 177–186 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.P. would like to acknowledge Florian Weyland providing the sample; Dr. Nikola Novak and Dr. Rahul Vaish for measurement. S. Patel also acknowledges financial support received by Science and engineering research board (SERB) for Start-up Research Grant (No. SRG/2020/000188).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Yadav, H. & Kumar, M. Effect of uniaxial stress on energy harvesting, storage and electrocaloric performance of BZT ceramics. J. Korean Ceram. Soc. 58, 437–444 (2021). https://doi.org/10.1007/s43207-021-00118-4

Download citation

Keywords

  • Energy harvesting
  • Ferroelectric
  • Olsen cycle
  • Electrocaloric
  • Energy storage