Abstract
The need for high performance of protonic ceramic fuel cells (PCFCs) has created significant interest in highly active cathode materials. Since a major charge carrier in PCFCs is proton, the use of triple conducting oxide (TCO) materials, in which oxygen ion, hole, and proton can be transported, is expected to improve the electrochemical performance of PCFCs. In this study, the applicability of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) cathode, known as TCO material, in PCFCs is investigated. The chemical compatibility of PBSCF with BaCe0.55Zr0.3Y0.15O3–δ (BCZY3) proton-conducting electrolyte at high temperature is examined by XRD. To improve the interfacial structure between BCZY3 electrolyte and single-phase PBSCF cathode, PBSCF-BCZY3 composite layer is inserted between both layers. The optimization of sintering temperature and thickness of cathode results in the successful fabrication of PCFCs, exhibiting low ohmic resistance and high electrochemical performance.
This is a preview of subscription content, access via your institution.








References
A. Kirubakaran, S. Jain, R. Nema, A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)
O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014)
A. Midilli, I. Dincer, Key strategies of hydrogen energy systems for sustainability. Int. J. Hydrogen Energy 32(5), 511–524 (2007)
N.Z. Muradov, T.N. Veziroğlu, “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energy 33(23), 6804–6839 (2008)
W.W. Clark II., J. Rifkin, A green hydrogen economy. Energy Policy 34(17), 2630–2639 (2006)
N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics 174(1–4), 271–277 (2004)
S.J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, K.J. Yoon, Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J. Power Sources 360, 284–293 (2017)
Q. Zhou, F. Wang, Y. Shen, T. He, Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195(8), 2174–2181 (2010)
Y. Sakito, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, Y. Liu, Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 182(2), 476–481 (2008)
D.J. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37(8), 1568–1578 (2008)
S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017)
H.I. Ji, J.H. Lee, J.W. Son, K.J. Yoon, S. Yang, B.K. Kim, Protonic ceramic electrolysis cells for fuel production: a brief review. J. Korean Ceram. Soc. 57, 480 (2020)
S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202 (2018)
C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015)
L. Jiang, T. Wei, R. Zeng, W.-X. Zhang, Y.-H. Huang, Thermal and electrochemical properties of PrBa0.5Sr0.5Co2−xFexO5+δ (x= 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 232, 279–285 (2013)
D. Jeong, A. Jun, Y.W. Ju, J. Hyodo, J. Shin, T. Ishihara, T.H. Lim, G. Kim, Structural, electrical, and electrochemical characteristics of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= Pr, Sm, Gd) as cathode materials in intermediate-temperature solid oxide fuel cells. Energy Technol. 5(8), 1337–1343 (2017)
D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras, A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochim. Acta 210, 681–688 (2016)
L.Q. Le, C.H. Hernandez, M.H. Rodriguez, L. Zhu, C. Duan, H. Ding, R.P. O’Hayre, N.P. Sullivan, Proton-conducting ceramic fuel cells: scale up and stack integration. J. Power Sources 482, 228868 (2021)
H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon, H. Kim, D. Shin, H.-I. Ji, J.-H. Lee, A 5× 5 cm2 protonic ceramic fuel cell with a power density of 13 W cm–2 at 600 °C. Nat. Energy 3(10), 870–875 (2018)
C. Rossignol, J. Ralph, J.-M. Bae, J. Vaughey, Ln1−xSrxCoO3 (Ln= Gd, Pr) as a cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics 175(1–4), 59–61 (2004)
M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494(1–2), 175–189 (2010)
D. Agrawal, Microwave sintering of ceramics, composites and metallic materials, and melting of glasses. Trans. Indian Ceram. Soc. 65(3), 129–144 (2006)
J. Fleig, Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance. Annu. Rev. Mater. Res. 33(1), 361–382 (2003)
C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance: i. Theoretical analysis. J. Electrochem. Soc. 144(1), 21 (1997)
H. Kim, Y.S. Chung, T. Kim, H. Yoon, J.G. Sung, H.K. Jung, W.B. Kim, L.B. Sammes, J.S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia. Solid State Ionics 339, 115010 (2019)
Q. Xu, D.-p Huang, F. Zhang, W. Chen, M. Chen, H.-x Liu, Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3−δ–Ce0.8Sm0.2O2−δ composite cathodes. J. Alloy. Compd. 454(1–2), 460–465 (2008)
R. Li, L. Ge, H. Chen, L. Guo, Preparation and performance of triple-layer graded LaBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 85, 273–277 (2012)
T. Kenjo, T. Nakagawa, Ohmic resistance of the electrode-electrolyte interface in Au/YSZ oxygen electrodes. J. Electrochem. Soc. 143(4), L92 (1996)
J. Smith, A. Chen, D. Gostovic, D. Hickey, D. Kundinger, K. Duncan, R. DeHoff, K. Jones, E. Wachsman, Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180(1), 90–98 (2009)
J.S. Park, H.J. Choi, G.D. Han, J. Koo, E.H. Kang, D.H. Kim, K. Bae, J.H. Shim, High–performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium–rich interface coating. J. Power Sources 482, 229043 (2021)
Acknowledgements
This work was supported by Technology Development Program to Solve Climate Changes through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (2017M1A2A2044982), and the institutional research program of the Korea Institute of Science and Technology (Grant Nos. 2E30220 and 2V08440).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Im, S., Lee, JH. & Ji, HI. PrBa0.5Sr0.5Co1.5Fe0.5O5+δ composite cathode in protonic ceramic fuel cells. J. Korean Ceram. Soc. 58, 351–358 (2021). https://doi.org/10.1007/s43207-021-00109-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43207-021-00109-5