Skip to main content

Ceramic layered double hydroxide nanohybrids for therapeutic applications


Layered double hydroxides (LDHs) have attracted considerable interest in bio-related applications owing to their good biocompatibility, biodegradability, facile preparation, and versatile functionality such as tailored drug loading, efficient cellular delivery, targeted delivery, and the controlled release of gene, drug, or other bioactive molecules. In particular, LDHs can accommodate various therapeutic agents and have been extensively explored to achieve novel multifunctional ceramic nanohybrids for therapeutic applications. Here, we review and highlight the recent progresses in ceramic nanohybrids based on LDH materials and their related curative application systems for gene therapy, chemotherapy, phototherapy, and combination therapy. Concretely, the synthetic strategies, structural features, and functions of LDHs as nonviral vectors and their versatile hybrid systems are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

reproduced from Ref. [30]


  1. 1.

    D.H. Park, J. Cho, O.J. Kwon, C.O. Yun, J.H. Choy, Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation. Angew. Chem. Int. Ed. 55(14), 4582–4586 (2016)

    CAS  Google Scholar 

  2. 2.

    D.H. Park, S.J. Hwang, J.M. Oh, J.H. Yang, J.H. Choy, Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog. Polym. Sci. 38(10–11), 1442–1486 (2013)

    CAS  Google Scholar 

  3. 3.

    J.M. Oh, D.H. Park, J.H. Choy, Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 40, 583–595 (2011)

    CAS  Google Scholar 

  4. 4.

    D.H. Park, J.E. Kim, J.M. Oh, Y.G. Shul, J.H. Choy, DNA core@inorganic shell. J. Am. Chem. Soc. 132(47), 16735–16736 (2010)

    CAS  Google Scholar 

  5. 5.

    R. Liang, M. Wei, D.G. Evans, X. Duan, Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. 50(91), 14071–14081 (2014)

    CAS  Google Scholar 

  6. 6.

    J.M. Oh, D.H. Park, S.J. Choi, J.H. Choy, LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotechnol. 6(3), 200–217 (2012)

    CAS  Google Scholar 

  7. 7.

    K. Ladewig, Z.P. Xu, G.Q. Lu, Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv. 6(9), 907–922 (2009)

    CAS  Google Scholar 

  8. 8.

    G.E. Choi, S. Eom, A. Vinu, J.H. Choy, 2D nanostructured metal hydroxides with gene delivery and theranostic functions; a comprehensive review. Chem. Rec. 18(7–8), 1033–1053 (2018)

    CAS  Google Scholar 

  9. 9.

    W.J. Jin, D.H. Park, Functional layered double hydroxide nanohybrids for biomedical imaging. Nanomaterials 9(10), 1404 (2019)

    CAS  Google Scholar 

  10. 10.

    Z. Gu, J.J. Atherton, Z.P. Xu, Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications. Chem. Commun. 51, 3024–3036 (2015)

    CAS  Google Scholar 

  11. 11.

    D.H. Park, G. Choi, J.H. Choy, Bio-layered double hydroxides nanohybrids for theranostics applications. Photofunct. Layer. Mater. Struct. Bond. 166, 137–174 (2015)

    CAS  Google Scholar 

  12. 12.

    S.M. Paek, J.M. Oh, J.H. Choy, A lattice-engineering route to heterostructured functional nanohybrids. Chem. Asian. J. 6(2), 324–338 (2011)

    CAS  Google Scholar 

  13. 13.

    G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)

    CAS  Google Scholar 

  14. 14.

    B. Saifullah, M.Z.B. Hussein, Inorganic nanolayers: structure, preparation, and biomedical applications. Int J Nanomed. 10(1), 5609–5633 (2015)

    CAS  Google Scholar 

  15. 15.

    D.H. Park, C.J. Han, Y.G. Shul, J.H. Choy, Avatar DNA nanohybrid system in Chip-on-a-phone. Sci. Rep. 4, 4879 (2014)

    CAS  Google Scholar 

  16. 16.

    J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier, Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 121(6), 1399–1400 (1999)

    CAS  Google Scholar 

  17. 17.

    J.H. Choy, J.M. Oh, M. Park, K.M. Sohn, J.W. Kim, Inorganic–Biomolecular hybrid nanomaterials as a genetic molecular code system. Adv. Mater. 16(14), 1181–1184 (2004)

    CAS  Google Scholar 

  18. 18.

    D.H. Park, J.H. Choy, Emerging strategies in infohybrid systems. Eur. J. Inorg. Chem. 2012(32), 5145–5153 (2012)

    CAS  Google Scholar 

  19. 19.

    H. Zuo, W. Chen, B. Li, K. Xu, H. Cooper, Z. Gu, Z.P. Xu, MnAl layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery. Chem. Eur. J. 23, 14299–14306 (2017)

    CAS  Google Scholar 

  20. 20.

    J.H. Choy, S.Y. Kwak, Y.J. Jeong, J.S. Park, Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed. 39(22), 4042–4045 (2000)

    CAS  Google Scholar 

  21. 21.

    J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J.Y. Jeong, Y.K. Kang, O.J. Han, Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25(15), 3059–3064 (2004)

    CAS  Google Scholar 

  22. 22.

    J. Liu, L. Song, S. Liu, S. Zhao, Q. Jiang, B. Ding, A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew. Chem. Int. Ed. 57(47), 15486–15490 (2018)

    CAS  Google Scholar 

  23. 23.

    T.W. Kim, I.Y. Kim, D.H. Park, J.H. Choy, S.J. Hwang, Highly stable nanocontainer of APTES-Anchored layered titanate nanosheet for reliable protection/recovery of nucleic acid. Sci. Rep. 6, 21993 (2016)

    CAS  Google Scholar 

  24. 24.

    L. Li, W. Gu, J. Chen, W. Chen, Z.P. Xu, Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials 35(3), 3331–3339 (2014)

    CAS  Google Scholar 

  25. 25.

    G.E. Choi, T.H. Kim, J.M. Oh, J.H. Choy, Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord. Chem. Rev. 359, 32–51 (2018)

    CAS  Google Scholar 

  26. 26.

    H.E. Chung, D.H. Park, J.H. Choy, S.J. Choi, Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: size-dependent cellular delivery. Appl. Clay. Sci. 65–66, 24–30 (2012)

    Google Scholar 

  27. 27.

    W. Cao, F. Muhammad, Y. Cheng, M. Zhou, Q. Wang, Z. Lou, Z. Li, H. Wei, Acid susceptible ultrathin mesoporous silica coated on layered double hydroxide nanoplates for pH responsive cancer therapy. ACS Appl. Biol. Mater. 1(3), 928–935 (2018)

    CAS  Google Scholar 

  28. 28.

    S. Ray, S. Saha, B. Sa, J. Chakraborty, In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma. Drug Deliv. Transl. Res. 7(2), 259–275 (2017)

    CAS  Google Scholar 

  29. 29.

    B. Li, J. Tang, W. Chen, G. Hao, N. Kurniawan, Z. Gu, Z.P. Xu, Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acidenhanced photothermo-/chemo-therapy. Biomaterials 177, 40–51 (2018)

    CAS  Google Scholar 

  30. 30.

    L. Peng, X. Mei, J. He, J. Xu, W. Zhang, R. Liang, M. Wei, D.G. Evans, X. Duan, Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Adv. Mater. 30, 1707389 (2018)

    Google Scholar 

  31. 31.

    S.J. Choi, G.E. Choi, J.M. Oh, Y.J. Oh, M.C. Park, J.H. Choy, Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J. Mater. Chem. 20, 9463–9469 (2010)

    CAS  Google Scholar 

  32. 32.

    A. Hakeem, G. Zhan, Q. Xu, T. Yong, X. Yang, L. Gan, Facile synthesis of pH-responsive doxorubicin-loaded layered double hydroxide for efficient cancer therapy. J. Mater. Chem. B 6(36), 5768–5774 (2018)

    CAS  Google Scholar 

  33. 33.

    P.R. Wei, S.H. Cheng, W.N. Liao, K.C. Kao, C.F. Weng, C.H. Lee, Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J. Mater. Chem. 22(12), 5503–5513 (2012)

    CAS  Google Scholar 

  34. 34.

    G.E. Choi, O.J. Kwon, Y.J. Oh, C.O. Yun, J.H. Choy, Inorganic Nanovehicle Targets Tumor in an Orthotopic Breast Cancer Model. Sci. Rep. 4(1), 4430 (2014)

    Google Scholar 

  35. 35.

    G. Huang, K.L. Zhang, S. Chen, S.H. Li, L.L. Wang, L.P. Wang, R. Liu, J. Gao, H.H. Yang, Manganese-iron layered double hydroxide: a theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J. Mater. Chem. B 5(20), 3629–3633 (2017)

    CAS  Google Scholar 

  36. 36.

    J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, Cellular uptake behavior of [c-32P] labeled ATP–LDH nanohybrids. J. Mater. Chem. 11(6), 1671–1674 (2001)

    CAS  Google Scholar 

  37. 37.

    J.H. Yang, S.Y. Lee, S. Yang, K.C. Park, J.H. Choy, Efficient transdermal penetration and improved stability of L-ascorbic acid encapsulated in an inorganic nanocapsule. Bull. Korean Chem. Soc. 24(4), 499–503 (2003)

    CAS  Google Scholar 

  38. 38.

    P.R. Wei, Y. Kuthati, R.K. Kankala, C.H. Lee, Synthesis and characterization of chitosan-coated near-infrared (NIR) layered double hydroxide-indocyanine green nanocomposites for potential applications in photodynamic therapy. Int. J. Mol. Sci. 16(9), 20943–20968 (2015)

    CAS  Google Scholar 

  39. 39.

    Y. Weng, S. Guan, H. Lu, X. Meng, A.Y. Kaassis, X. Ren, X. Qu, C. Sun, Z. Xie, S. Zhou, Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta 184, 50–57 (2018)

    CAS  Google Scholar 

  40. 40.

    R. Liang, R. Tian, L. Ma, L. Zhang, Y. Hu, J. Wang, M. Wei, A supermolecular photosensitizer with excellent anticancer performance in photodynamic therapy. Adv. Funct. Mater. 24(21), 3144–3151 (2014)

    CAS  Google Scholar 

  41. 41.

    R. Gao, X. Mei, D. Yan, R. Liang, M. Wei, Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 9(1), 2798 (2018)

    Google Scholar 

  42. 42.

    K. Khorsandi, R. Hosseinzadeh, M. Fateh, Curcumin intercalated layered double hydroxide nanohybrid as potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Adv. 5(114), 93987–93994 (2015)

    CAS  Google Scholar 

  43. 43.

    X.S. Li, M.R. Ke, W. Huang, C.H. Ye, J.D. Huang, A pH-responsive layered double hydroxide (LDH)–phthalocyanine nanohybrid for efficient photodynamic therapy. Chem. Eur. J. 21(8), 3310–3317 (2015)

    CAS  Google Scholar 

  44. 44.

    Z. Wang, R. Ma, L. Yan, X. Chen, G. Zhu, Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chem. Commun. 51(58), 11587–11590 (2015)

    CAS  Google Scholar 

  45. 45.

    X. Li, B.Y. Zheng, M.R. Ke, Y. Zhang, J.D. Huang, J. Yoon, A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics 7(10), 2746–2756 (2017)

    CAS  Google Scholar 

  46. 46.

    J.M. Oh, S.J. Choi, G.E. Lee, S.H. Han, J.H. Choy, Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Funct. Mater. 19(10), 1617–1624 (2009)

    CAS  Google Scholar 

  47. 47.

    J.M. Oh, S.J. Choi, G.E. Lee, J.E. Kim, J.H. Choy, Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J. 4(1), 67–73 (2009)

    CAS  Google Scholar 

  48. 48.

    H. Zuo, W. Chen, H.M. Cooper, Z.P. Xu, A facile way of modifying layered double hydroxide nanoparticles with targeting ligand-conjugated albumin for enhanced delivery to brain tumour cells. ACS Appl. Mater. Interfaces 9(24), 20444–20453 (2017)

    CAS  Google Scholar 

  49. 49.

    Y. Li, W. Bao, H. Wu, J. Wang, Y. Zhang, Y. Wan, D. Cao, D. O’Hare, Q. Wang, Delaminated layered double hydroxide delivers DNA molecules as sandwich nanostructure into cells via a non-endocytic pathway. Sci. Bull. 62(10), 686–692 (2017)

    CAS  Google Scholar 

  50. 50.

    K.N. Andrade, A.M.P. Pérez, G.G.C. Arízaga, Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Appl. Clay Sci. 181, 105214 (2019)

    CAS  Google Scholar 

  51. 51.

    J.M. Oh, S.J. Choi, S.T. Kim, J.H. Choy, cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 17(6), 1411–1417 (2006)

    CAS  Google Scholar 

  52. 52.

    B. Li, Z. Gu, N. Kurniawan, W. Chen, Z.P. Xu, Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Adv. Mater. 29(29), 1700373 (2017)

    Google Scholar 

  53. 53.

    T.H. Kim, G.J. Lee, J.H. Kang, H.J. Kim, T.I. Kim, J.M. Oh, Anticancer drug-incorporated layered double hydroxide nanohybrids and their enhanced anticancer therapeutic efficacy in combination cancer treatment. BioMed Res. Int. 2014, 1–11 (2014)

    CAS  Google Scholar 

  54. 54.

    N. Wang, Z. Wang, Z. Xu, X. Chen, G. Zhu, A cisplatin-loaded immunochemotherapeutic nanohybrid bearing immune checkpoint inhibitors for enhanced cervical cancer therapy. Angew. Chem. Int. Ed. 57(13), 3426–3430 (2018)

    CAS  Google Scholar 

  55. 55.

    G.E. Choi, I.R. Jeon, H. Piao, J.H. Choy, Highly condensed boron cage cluster anions in 2D carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Adv. Funct. Mater. 28(27), 1704470 (2018)

    Google Scholar 

  56. 56.

    D. Schmid, C.G. Park, C.A. Hartl, N. Subedi, A.N. Cartwright, R.B. Puerto, Y. Zheng, J. Maiarana, G.J. Freeman, K.W. Wucherpfennig, D.J. Irvine, M.S. Goldberg, T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8(1), 1747 (2017)

    Google Scholar 

  57. 57.

    C.G. Park, C.A. Hartl, D. Schmid, E.M. Carmona, H.J. Kim, M.S. Goldberg, Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10(433), eqqr1916 (2018)

    Google Scholar 

Download references


This work was supported by the research grant of the Chungbuk National University in 2020. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1G1A1006582).

Author information



Corresponding authors

Correspondence to Jae-Ha Myung, Byoung Choul Kim or Dae-Hwan Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Ha, S., Myung, JH. et al. Ceramic layered double hydroxide nanohybrids for therapeutic applications. J. Korean Ceram. Soc. 57, 597–607 (2020).

Download citation


  • Layered double hydroxide
  • Nanohybrid
  • Gene therapy
  • Chemotherapy
  • Phototherapy
  • Combination therapy