Skip to main content

Advertisement

Log in

Alumina ceramics doped with manganese titanate via applying Mn–Ti–O coatings to corundum micropowder

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this work was (i) to develop an untraditional method of alumina doping that ensures low sintering temperature and (ii) to obtain dense engineering ceramics with good mechanical properties by conventional sintering. A nanostructured coating of manganese–titanium oxides was applied to α-Al2O3 micropowder particles using liquid-phase synthesis of Mn–Ti–O–C–H xerogel and its annealing. The alumina modified in this way was sintered at 1300–1400 °C in air. The sintering process was accompanied by the formation of manganese metatitanate MnTiO3. The sintered samples have the relative density of about 97%, the bending strength of ≥ 260 MPa, and the Vickers microhardness of ≥ 16 GPa. The longitudinal and transverse sound velocities were measured, from which the Poisson’s ratio of 0.24 and the Young’s modulus of ≥ 360 GPa were calculated. Modification with MnTiO3 precursors yielded higher mechanical properties of ceramics than modification with a ready MnTiO3 coating. The results are compared with the properties of Al2O3 doped with Mn–Ti–O formulations in other studies, and of industrial alumina ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. At the Al2O3 content of 95 wt% or higher, alumina ceramics are termed corundum ceramics.

  2. Common designation core@shell.

  3. In fact, the mass of an element is measured per unit surface area, which is converted into thickness using a given density.

  4. The standard deviations are indicated after the ± sign in Table 3.

  5. Calculation by the Anderson–Hasler equation [44] yielded the X-ray range (EDS depth) RX = 2.2 μm. Approximating the X-ray exit zone by a hemisphere (sphere) of diameter RX, we obtain the analyzed volume of 2.8 (5.6) μm3. The volume of an Al2O3 particle with a median size of 1.5 μm (Table 1) is 1.8 μm3. Therefore, roughly 2–3 particles are analyzed: 2.8 (5.6)/1.8 = 1.6 (3.1).

References

  1. A.M. Abyzov, Aluminum oxide and alumina ceramics (review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3. Refract. Ind. Ceram 60, 24–32 (2019). https://doi.org/10.1007/s11148-019-00304-2

    Article  Google Scholar 

  2. A.M. Abyzov, Research on the development of high-quality aluminum oxide ceramic (review). Part 1. Sintering with additives, reactive sintering, production of reinforced composites. Glass Ceram. 75, 293–302 (2018). https://doi.org/10.1007/s10717-018-0074-x

    Article  CAS  Google Scholar 

  3. A.M. Abyzov, Latest research on the development of high-quality aluminum oxide ceramics (review). Part 2. Synthesys and sintering of nanopowders, sol-gel and other methods of producing finely disperse and fibrous aluminium oxide. Glass Ceram. 75, 352–362 (2019). https://doi.org/10.1007/s10717-019-00084-8

    Article  CAS  Google Scholar 

  4. A. Krell, P. Blank, The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina. J. Eur. Ceram. Soc. 16, 1189–1200 (1996). https://doi.org/10.1016/0955-2219(96)00044-1

    Article  CAS  Google Scholar 

  5. D. Galusek, J. Sedláček, J. Chovanec, M. Michálková, The influence of MgO, Y2O3 and ZrO2 additions on densification and grain growth of submicrometre alumina sintered by SPS and HIP. Ceram. Int. 41, 9692–9700 (2015). https://doi.org/10.1016/j.ceramint.2015.04.038

    Article  CAS  Google Scholar 

  6. G.R. Karagedov, A.L. Myz, Preparation and sintering pure nanocrystalline alumina powder. J. Eur. Ceram. Soc. 32, 219–225 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.0122

    Article  CAS  Google Scholar 

  7. J. Deckers, J. Vleugels, V. Kruth, Additive manufacturing of ceramics: a review. J. Ceram. Sci. Tech. 5, 245–260 (2014). https://doi.org/10.4416/JCST2014-00032

    Article  Google Scholar 

  8. J.A. Gonzalez, J. Mireles, Y. Lin, R.B. Wicker, Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram. Int. 42, 10559–10564 (2016). https://doi.org/10.1016/j.ceramint.2016.03.079

    Article  CAS  Google Scholar 

  9. E.S. Lukin, N.A. Makarov, I.V. Dodonova, S.V. Tarasova, E.A. Bad’ina, N.A. Popova, New ceramic materials based on alminum oxide. Refract. Ind. Ceram 42, 261–268 (2001). https://doi.org/10.1016/S0272-8842(97)00082-5

    Article  CAS  Google Scholar 

  10. H. Li, X. Xi, J. Ma, K. Hua, A. Shui, Low-temperature sintering of coarse alumina powder compact with sufficient mechanical strength. Ceram. Int. 43, 5108–5114 (2017). https://doi.org/10.1016/j.ceramint.2017.01.024

    Article  CAS  Google Scholar 

  11. S. Lahiri, S. Sinhamahapatra, H.S. Tripathi, K. Dana, Rationalizing the role of magnesia and titania on sintering of α-alumina. Ceram. Int. 42, 15405–15413 (2016). https://doi.org/10.1016/j.ceramint.2016.06.189

    Article  CAS  Google Scholar 

  12. S.B. Dhuban, S. Ramesh, C.Y. Tan, Y.H. Wong, U.J. Alengaram, S. Ramesh, W.D. Teng, F. Tarlochan, U. Sutharsini, Sintering behaviour and properties of manganese-doped alumina. Ceram. Int. 45, 7049–7054 (2019). https://doi.org/10.1016/j.ceramint.2018.12.207

    Article  CAS  Google Scholar 

  13. J. Kim, J.-H. Ha, J. Lee, I.-H. Song, The effect of MnO2 content on the permeability and electrical resistance of porous alumina-based ceramics. J. Korean Ceram. Soc. 54, 331–339 (2017). https://doi.org/10.4191/kcers.2017.54.4.07

    Article  CAS  Google Scholar 

  14. A.K. Dey, K. Biswas, Dry sliding wear of zirconia-toughened alumina with different metal oxide additives. Ceram. Int. 35, 997–1002 (2009). https://doi.org/10.1016/j.ceramint.2008.04.006

    Article  CAS  Google Scholar 

  15. I.B. Cutler, C. Bradshaw, C.J. Christensen, E.P. Hyatt, Sintering of alumina at temperatures of 1400°C and below. J. Am. Ceram. Soc. 40, 134–139 (1957). https://doi.org/10.1111/j.1151-2916.1957.tb12589.x

    Article  CAS  Google Scholar 

  16. A.K. Shirvinskaya, L.P. Kachalova, Mechanism of alumina sintering in the system Al2O3–MnO–TiO2. Zh. Prikl. Khimii 51, 506–510 (1978) [In Russian]

    CAS  Google Scholar 

  17. T. Rabe, P. Nobst, B. Moeser, K. Koehnke, Phase constituents and sintering behavior of Mn-Ti doped ceramics as a function of the sintering atmosphere. Silikattechnik 34, 49–52 (1983) [In Deutsch]

    CAS  Google Scholar 

  18. E. Kostic, S. Kiss, S. Boscovic, Sintering and microstructure development in the Al2O3–MnO–TiO2 system. Powder Metall. Int. 22, 29–30 (1990). https://www.researchgate.net/publication/292282711_Sintering_and_microstructure_development_in_the_Al2O3-MnO-TiO2_system

  19. S.S. Ordan’yan, T.I. Samokhvalova, G.P. Zaitsev, A corundum ceramic having a low sintering temperature. Refractories 33, 203–206 (1992). https://doi.org/10.1007/BF01283565

    Article  Google Scholar 

  20. H. Erkalfa, Z. Misirli, T. Baykara, The effect of TiO2 and MnO2 on densification and microstructural development of alumina. Ceram. Int. 24, 81–90 (1998). https://doi.org/10.1016/S0272-8842(97)00082-5

    Article  CAS  Google Scholar 

  21. S. Veskovic-Bukudur, T. Leban, M. Ambrozic, T. Kosmac, Machining and wear of high-alumina ceramics for structural applications. Key Eng. Mater. 409, 137–144 (2009). https://doi.org/10.4028/www.scientific.net/KEM.409.137

    Article  CAS  Google Scholar 

  22. V.M. Shelekhina, Activation of sintering processes of powder materials based on oxide ceramics, in: P.A.Vityaz (Ed.), Powder metallurgy: surface engineering, new powder composite materials. Welding: Reports of 8-th Intern. Symp. (Minsk, April 10–12, 2013), Nat. Acad. Sciences of Belarus, Navuka, Minsk, 2013, Part 1, pp. 372–375 [In Russian]

  23. C. Toy, M. Demirci, S. Onurlu, M. Sadik Tasar, T. Baykara, A colloidal method for manganese oxide addition to alumina powder and investigation of properties. J. Mater. Sci. 30, 4183–4187 (1995). https://doi.org/10.1007/BF00360728

    Article  CAS  Google Scholar 

  24. H. Erkalfa, Z. Misirli, M. Demirci, C. Toy, T. Baykara, The densification and microstructural development of A12O3 with manganese oxide addition. J. Eur. Ceram. Soc. 15, 165–171 (1995). https://doi.org/10.1016/0955-2219(95)93062-8

    Article  CAS  Google Scholar 

  25. M. Sathiyakumar, F.D. Gnanam, Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3. Ceram. Int. 28, 195–200 (2002). https://doi.org/10.1016/S0272-8842(01)00077-3

    Article  CAS  Google Scholar 

  26. T. Hernandez, M.C. Bautista, The role of the synthesis route to obtain densified TiO2-doped alumina ceramics. J. Eur. Ceram. Soc. 25, 663–672 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.01.013

    Article  CAS  Google Scholar 

  27. T. Hernandez, C. Bautista, P. Martín, Synthesis and thermal evolution of Mn-doped alumina nanoparticles by homogeneous precipitation with urea. Mater. Chem. Phys. 92, 366–372 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.038

    Article  CAS  Google Scholar 

  28. W. Liu, Z. Xie, G.W. Liu, X. Yang, Novel preparation of translucent alumina ceramics induced by doping additives via chemical precipitation method. J. Am. Ceram. Soc. 94, 3211–3215 (2011). https://doi.org/10.1111/j.1551-2916.2011.04796.x

    Article  CAS  Google Scholar 

  29. D. Galusek, K. Ghillanyova, J. Sedlacek, J. Kozankova, P. Sajgalik, The influence of additives on microstrucutre of sub-micron alumina ceramics prepared by two-stage sintering. J. Eur. Ceram. Soc. 32, 1965–1970 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.038

    Article  CAS  Google Scholar 

  30. J. Huang, Q. Liao, F. Wang, X. Huang, H. Zhu, Synthesis of Fe-doped alumina transparent ceramics by coprecipitation and vacuum sintering. Ceram. Int. 44, 799–804 (2018). https://doi.org/10.1016/j.ceramint.2017.10.002

    Article  CAS  Google Scholar 

  31. A.M. Abyzov, N.A. Khristyuk, F.M. Shakhov, Synthesis of manganese titanate and its precursors from xerogel. Ceram. Int. 46, 1990–2001 (2020). https://doi.org/10.1016/j.ceramint.2019.09.178

    Article  CAS  Google Scholar 

  32. M. Jayasankar, S. Ananthakumar, P. Mukundan, W. Wunderlich, K.G.K. Warrier, Al2O3 @ TiO2—a simple sol–gel strategy to the synthesis of low temperature sintered alumina–aluminium titanate composites through a core–shell approach. J. Solid State Chem. 181, 2748–2754 (2008). https://doi.org/10.1016/j.jssc.2008.06.057

    Article  CAS  Google Scholar 

  33. X. Jin, L. Gao, J. Sun, Y. Liu, L. Gui, Highly transparent AlON pressurelessly sintered from powder synthesized by a novel carbothermal nitridation method. J. Am. Ceram. Soc. 95, 2801–2807 (2012). https://doi.org/10.1111/j.1551-2916.2012.05253.x

    Article  CAS  Google Scholar 

  34. A. Kritikaki, A. Tsetsekou, Fabrication of porous alumina ceramics from powder mixtures with sol–gel derived nanometer alumina: effect of mixing method. J. Eur. Ceram. Soc. 29, 1603–1611 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.011

    Article  CAS  Google Scholar 

  35. W. Du, X. Ren, C. Ma, Z. Pei, Ceramic binder jetting additive manufacturing: particle encapsulation for increasing powder sinterability and part strength. Mater. Lett. 234, 327–330 (2019). https://doi.org/10.1016/j.matlet.2018.09.118

    Article  CAS  Google Scholar 

  36. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (CRC Press, Boca Raton, 2003), pp. 95, 761, 764

  37. R.A. Lidin, L.L. Andreeva, V.A. Molochko, Handbook of Inorganic Chemistry. Constants of Inorganic Substances. (Chemistry, Moscow, 1987), p. 179 [In Russian]

  38. “Alox” Ltd. http://www.alox-ceramics.ru/en/. Accessed 01 June 2020

  39. K. Niesel, Determination of the specific surface by measurement of permeability. Mat. Constr. 6, 227–231 (1973). https://doi.org/10.1007/BF02479037

    Article  Google Scholar 

  40. GOST 23401-90. Metal powders, catalysts and carriers. Determination of specific surface area [In Russian]

  41. GOST 2409-2014. Refractories. Method for determining apparent density, open and total porosity, water absorption [In Russian]

  42. S.-J. Wu, P.-C. Chin, H. Liu, Measurement of elastic properties of brittle materials by ultrasonic and indentation methods. Appl. Sci. 9(10), 2067 (2019). https://doi.org/10.3390/app9102067

    Article  CAS  Google Scholar 

  43. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  44. J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2003), p. 286

    Book  Google Scholar 

  45. W.M. Haynes (Ed.), CRC Handbook of Chemistry and Physics, 97 edn. (CRC Press, Boca Raton, 2017), pp. 4-45, 4-73

  46. J.J. Swab, Recommendations for determining the hardness of armor ceramics. Int. J. Appl. Ceram. Technol. 1, 219–225 (2004). https://doi.org/10.1111/j.1744-7402.2004.tb00173.x

    Article  CAS  Google Scholar 

  47. H.-J. Lim, D.-H. Cho, M.-K. Kim, S.-M. Han, M. Iwasa, The evaluation of mechanical properties for alumina ceramics. J. Korean Ceram. Soc. 33, 339–347 (1996) https://www.jkcs.or.kr/m/journal/view.php?number=4293

  48. A.M. Abyzov, Aluminum oxide and alumina ceramics (review). Part 2. Foreign manufacturers of alumina ceramics. Technologies and research in the field of alumina ceramics. Refract. Ind. Ceram 60, 33–42 (2019). https://doi.org/10.1007/s11148-019-00305-1

    Article  Google Scholar 

  49. Z. Misirli, A. Uguz, T. Baykara, Effect of additives on the microstructure and mechanical properties of commercial alumina ceramics. Mater. Charact. 33, 329–341 (1994). https://doi.org/10.1016/1044-5803(94)90137-6

    Article  CAS  Google Scholar 

  50. P. Auerkari, Mechanical and Physical Properties of Engineering Alumina. (Technical Research Centre of Finland (VTT), Espoo, 1996), p. 14 https://www.vtt.fi/inf/pdf/tiedotteet/1996/T1792.pdf

  51. M. Asmani, C. Kermel, A. Leriche, M. Ourak, Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J. Eur. Ceram. Soc. 21, 1081–1086 (2001). https://doi.org/10.1016/S0955-2219(00)00314-9

    Article  CAS  Google Scholar 

  52. D. de Faoite, D.J. Browne, F.R. Chang-Díaz, K.T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J. Mater. Sci. 47, 4211–4235 (2012). https://doi.org/10.1007/s10853-011-6140-1

    Article  CAS  Google Scholar 

  53. A.M. Abyzov, Aluminum oxide and alumina ceramics (review). Part 3. Russian manufacturers of alumina ceramics. Refract. Ind. Ceram 60, 183–191 (2019). https://doi.org/10.1007/s11148-019-00333-x

    Article  Google Scholar 

  54. Ceramic Materials for light-weight Ceramic Polymer Armor Systems/CeramTec—ETEC Gmbh. https://www.ceramtec.com/files/et_armor_systems.pdf. Accessed 09 July 2020

Download references

Acknowledgments

This work (A. M. Abyzov, N. A. Khristyuk, V. V. Kozlov) was supported by the state assignment of the Ministry of Science and Higher Education of the Russian Federation (785.00.X6019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey M. Abyzov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abyzov, A.M., Khristyuk, N.A., Kozlov, V.V. et al. Alumina ceramics doped with manganese titanate via applying Mn–Ti–O coatings to corundum micropowder. J. Korean Ceram. Soc. 57, 692–707 (2020). https://doi.org/10.1007/s43207-020-00076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00076-3

Keywords

Navigation