Skip to main content
Log in

Effect of alkali metal deintercalation on superconductivity in the KxFe2–ySe2 system

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, the intercalation and subsequent deintercalation of alkali metal (K) were performed on new tetragonal β-FeSe compounds, and the effect on their superconductivity was studied. The FeSe precursor was intercalated with potassium by solid-state reaction, and then the potassium was selectively etched by topochemical reaction with polar chemical solvents. The K-intercalated FeSe showed phase separation, into a major insulating phase with Fe vacancy and a minor superconducting phase without vacancy. After the topotactic deintercalation reaction, the deintercalated FeSe exhibited increased lattice parameters compared to the pristine FeSe compound, and antiferromagnetic behavior instead of superconductivity. The magnetic property can be attributed to the phase separation of the K-intercalated phases. The deintercalated phase retained the β-FeSe structure with Fe vacancies, which changed the superconductor to an antiferromagnetic metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Onnes, The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 120 (1911)

    Google Scholar 

  2. J.G. Bednorz, K.A. Mueller, Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Cond. Matt. 64, 189–193 (1986)

    Article  CAS  Google Scholar 

  3. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987)

    Article  CAS  Google Scholar 

  4. C.W. Chu, L. Gao, F. Chen, Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures. Nature 365, 323–325 (1993)

    Article  CAS  Google Scholar 

  5. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1–xFxFeAs. Nature 453, 376–378 (2008)

    Article  CAS  Google Scholar 

  6. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu, Superconductivity in the PbO-type Structure alpha-FeSe. Proc. Nat. Aca. Sci. 105, 14262–14264 (2008)

    Article  CAS  Google Scholar 

  7. F. Tomioka, S. Tsuda, Y. Mizuguchi, Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 93, 152505 (2008)

    Article  Google Scholar 

  8. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Superconductivity in the iron selenide KxFe2Se2. Phys. Rev. B. 82, 180520 (2010)

    Article  Google Scholar 

  9. T.P. Ying, X.L. Chen, G. Wang, S.F. Jin, T.T. Zhou, X.F. Lai, H. Zhang, W.Y. Wang, Observation of superconductivity at 30–46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426 (2012)

    Article  CAS  Google Scholar 

  10. M.B. Lucas, D.G. Free, S.J. Sedlmaier, J.D. Wright, S.J. Cassidy, Y. Hara, A.J. Corkett, T. Lancaster, P.J. Baker, S.J. Blundell, S.J. Clarke, Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat. Mater. 12, 15–19 (2013)

    Article  Google Scholar 

  11. T. Hatakeda, T. Noji, T. Kawamata, M. Kato, Y. Koike, New Li-ethylenediamine-intercalated superconductor Lix(C2H8N2)yFe2–zSe2 with Tc = 45 K. J. Phys. Soc. Jpn. 82, 123705 (2013)

    Article  Google Scholar 

  12. A.K. Maziopa, E.V. Pomjakushina, V.Y. Pomjakushin, F.V. Rohr, A. Schilling, K. Conder, Synthesis of a new alkali metal-organic solvent intercalated iron selenide superconductor with Tc ≈ 45 K. J. Phys. Condens. Matter. 24, 382202 (2012)

    Article  Google Scholar 

  13. Z. Li, W.H. Zhang, Q.Y. Wang, Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012)

    Article  Google Scholar 

  14. T.M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y.S. Hor, J. Allred, A.J. Williams, D. Qu, J. Checkelsky, N.P. Ong, R.J. Cava, Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79, 014522 (2009)

    Article  Google Scholar 

  15. E. Pomjakushina, K. Conder, V. Pomajakushin, M. Bendele, R. Khasanov, Synthesis, crystal structure, and chemical stability of the superconductor FeSe1–x. Phys. Rev. B 80, 024517 (2009)

    Article  Google Scholar 

  16. S. Margadonna, Y. Takabayashi, M.T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A.N. Fitch, E. Suarde, K. Prassides, Crystal structure of the new FeSe1–x superconductor. Chem. Comm. 2008, 5607–5609 (2008)

    Article  Google Scholar 

  17. A.J. Williams, R.J. Cava, T.M. McQueen, The stoichiometry of FeSe. Solid State Comm. 149, 37–38 (2009)

    Article  Google Scholar 

  18. X.F. Wang, X.G. Luo, X.H. Chen, Crystal structure, physical properties and superconductivity in AxFe2Se2 single crystal. New J. Phys. 13, 053011 (2011)

    Article  Google Scholar 

  19. D.P. Shoemaker, D.Y. Chung, H. Claus, M.C. Francisco, S. Avci, A. Llobet, M.G. Kanatzidis, Phase relations in KxFe2–ySe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction. Phys. Rev. B 86, 184511 (2012)

    Article  Google Scholar 

  20. Y. Liu, Q. Xing, W.E. Straszheim, J. Marshman, P. Pedersen, R. McLaughlin, T.A. Lograsso, Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal KxFe2–ySe2. Phys. Rev. B 93, 064509 (2016)

    Article  Google Scholar 

  21. W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J.P. Hu, X. Chen, Q.-K. Xue, Phase separation and magnetic order in K-doped iron selenide superconductor. Nat. Phys. 8, 126–130 (2012)

    Article  CAS  Google Scholar 

  22. M. Gooch, L.Z. Deng, J. Meen, High-pressure study of superconducting and nonsuperconducting single crystals of the same nominal composition Rb0.8Fe2Se2. Phys. Rev. B 84, 184517 (2011)

  23. Y. Liu, G. Wang, T. Ying, X. Lai, S. Jin, N. Liu, J. Hu, X. Chen, Understanding doping, vacancy, lattice stability, and superconductivity in KxFe2–ySe2. Adv Sci (2016). https://doi.org/10.1002/advs.201600098

    Article  Google Scholar 

  24. Z. Wang, Y.J. Song, H.L. Shi, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy. Phys. Rev. B 83, 140505 (2011)

    Article  Google Scholar 

  25. M. Tanaka, H. Takeya, Y. Takano, Direct observation of microstructures on superconducting single crystals of KxFe2–ySe2. App. Phys. Exp. 10, 2 (2017)

    Google Scholar 

  26. Z.-W. Wang, Z. Wang, Y.J. Song, C. Ma, Y. Cai, Z. Chen, H.F. Tian, H.X. Yang, G.F. Chen, J.Q. Li, Structural phase separation in K0.8Fe1.6+xSe2 superconductors. J. Phys. Chem. C 116, 17847–17852 (2012)

    Article  CAS  Google Scholar 

  27. D.M. Wang, J.B. He, T.-L. Xia, G.F. Chen, Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide KxFe2–ySe2. Phys. Rev. B 83, 132502 (2011)

    Article  Google Scholar 

  28. A.M. Zhang, T.L. Xia, K. Liu, W. Tong, Z.R. Yang, Q.M. Zhang, Superconductivity at 44 K in K intercalated FeSe system with excess Fe. Sci Rep 3, 1216 (2013)

    Article  Google Scholar 

  29. T.K. Chen, C.C. Chang, H.H. Chang, A.H. Fang, C.H. Wang, W.-H. Chao, C.-M. Tseng, Y.-C. Lee, Y.-R. Wu, M.-H. Wen, H.-Y. Tang, F.-R. Chen, M.-J. Wang, M.-K. Wu, D. Van Dyck, Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe. Proc. Nat. Aca. Sci. 111, 63–68 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2018M3D1A1058793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Young Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Kim, JY. & Shim, W. Effect of alkali metal deintercalation on superconductivity in the KxFe2–ySe2 system. J. Korean Ceram. Soc. 57, 658–668 (2020). https://doi.org/10.1007/s43207-020-00067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00067-4

Keywords

Navigation