Skip to main content
Log in

Boron-rich boron carbide from soot: a low-temperature green synthesis approach

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Boron carbide is a promising super-hard semiconducting material for refractory applications ranging from the nuclear industry to spacecraft. The present work is the first report of not only turning futile soot, containing carbon allotropes in varying composition, into boron-rich boron carbide (BC), but also developing it by a low-cost, low-temperature, and green synthesis method. The BC synthesised from gingelly oil soot is subjected to structural, morphological, and optical characterisations. The field emission scanning electron microscope shows beautiful flower-like morphology, and the thermogravimetric analysis reveals the high-temperature stability of the sample synthesised. The Tauc plot of the sample indicates a 2.38 eV direct bandgap. The formation of BC and boron-rich carbide evidenced by X-ray diffraction studies is confirmed through Raman and Fourier transform infrared spectroscopic signatures of B–C and C–B–C bonds. The fluorescence, power spectrum, and CIE analyses carried out suggest the blue light emission for excitation at 350 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BC:

Boron carbide

CNP:

Carbon nanoparticle

CNT:

Carbon nanotubes

EDS:

Energy-dispersive spectroscopy

XRD:

X-ray powder diffraction

FE:

Field emission

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analysis

UV–Vis:

Ultraviolet–visible

PL:

Photoluminescence

FT:

Fourier Transform

IR:

Infrared

CIE:

International Commission on Illumination

References

  1. F. Thévenot, J. Eur. Ceram. Soc. 6, 205–225 (1990)

    Article  Google Scholar 

  2. K.Y. Xie, V. Domnich, L. Farbaniec, B. Chen, K. Kuwelkar, L. Ma, J.W. McCauley, R.A. Haber, K.T. Ramesh, M. Chen, K.J. Hemker, Acta Mater. 136, 202–214 (2017)

    Article  CAS  Google Scholar 

  3. C. Cheng, K.M. Reddy, A. Hirata, T. Fujita, M. Chen, J. Eur. Ceram. Soc. 37, 4514–4523 (2017)

    Article  CAS  Google Scholar 

  4. A.W. Weimer, Carbide, nitride and boride materials synthesis and processing (Springer Science & Business Media, Germany, 2012)

    Google Scholar 

  5. D. Sarıyer, R. Küçer, N. Küçer, Procedia. Soc. Behav. Sci. 195, 1752–1756 (2015)

    Article  Google Scholar 

  6. S. Mondal, A.K. Banthia, J. Eur. Ceram. Soc. 25, 287–291 (2005)

    Article  CAS  Google Scholar 

  7. A. Chauhan, M.C. Schaefer, R.A. Haber, K.J. Hemker, Acta Mater. 181, 207–215 (2019)

    Article  CAS  Google Scholar 

  8. B.M. Moshtaghioun, F.L. Cumbrera, D. Gómez-García, J.I. Peña, Sci. Rep. 9, 13340 (2019)

    Article  Google Scholar 

  9. V.L. Solozhenko, O.O. Kurakevych, D. Andrault, Y. Le Godec, M. Mezouar, Phys. Rev. Lett. 102, 015506 (2009)

    Article  Google Scholar 

  10. A. Ektarawong, S.I. Simak, B. Alling, Phys. Rev. B 94, 054104 (2016)

    Article  Google Scholar 

  11. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, J. Appl. Phys. 124, 065303 (2018)

    Article  Google Scholar 

  12. M. Kakiage, N. Tahara, I. Yanase, H. Kobayashi, Mater. Lett. 65, 1839–1841 (2011)

    Article  CAS  Google Scholar 

  13. A.P. Awasthi, G. Subhash, J. Appl. Phys. 125, 215901 (2019)

    Article  Google Scholar 

  14. H.S. Saritha Devi, M. Swapna, G. Ambadas, S. Sankararaman, Chinese Phys. B. 27, 107702 (2018)

    Article  Google Scholar 

  15. D.Y. Wang, Q. Yan, B. Wang, Y.X. Wang, J. Yang, G. Yang, J. Chem. Phys. 140, 224704 (2014)

    Article  Google Scholar 

  16. Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, G. Zou, J. Appl. Phys. 108, 023507 (2010)

    Article  Google Scholar 

  17. T.Y. Kosolapova, Carbides (Springer, USA, 1995)

    Book  Google Scholar 

  18. H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications (Noyes Publications Park Ridge, USA, 1996)

    Google Scholar 

  19. G. V. Samsonov, in. Refractory carbides, ed. by G. V. Samsonov, V. Grigorii (Springer, USA, 1974)

  20. P. Murray, Low temperature synthesis of boron carbide using a polymer precursor powder route. University of Birmingham 2013

  21. H.V.S. Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 015603 (2018)

    Article  Google Scholar 

  22. M.S. Swapna, S. Sankararaman, J. Fluoresc. 28, 543–549 (2018)

    Article  CAS  Google Scholar 

  23. M.S. Swapna, V. Raj, H.V. Saritha Devi, S. Sankararaman, Photochem. Photobiol. Sci. 18, 1382–1388 (2019)

    Article  CAS  Google Scholar 

  24. M.S. Swapna, H.V. Saritha Devi, S. Sankararaman, Mater. Res. Express 6, 105622 (2019)

    Article  CAS  Google Scholar 

  25. M.S. Swapna, S. Sankararaman, Nano-Struct. Nano Objects 19, 100375 (2019)

    Article  CAS  Google Scholar 

  26. M.S. Swapna, S. Sankararaman, Int. Nano Lett. 9, 221–229 (2019)

    Article  CAS  Google Scholar 

  27. L. Shahriary, H. Ghourchian, A.A. Athawale, J. Nanotechnol. 2014, 1–10 (2014)

    Article  Google Scholar 

  28. Y.M. Han, J.J. Cao, E.S. Posmentier, J.C. Chow, J.G. Watson, K.K. Fung, Z.D. Jin, S.X. Liu, Z.S. An, Chemosphere 75, 92–99 (2009)

    Article  CAS  Google Scholar 

  29. M.S. Swapna, H.V. Saritha Devi, V. Raj, S. Sankararaman, Eur. Phys. J. Plus 133, 106 (2018)

    Article  Google Scholar 

  30. M.S. Swapna, S. Sankararaman, J. Mater. Sci. Nanotechnol. 5, 104 (2017)

    Google Scholar 

  31. M. Abdullah, K. Khairurrijal, J. Nano. Nanoteknol. 1, 28–32 (2009)

    Google Scholar 

  32. M.S. Swapna, H.V. Saritha Devi, S. Sankararaman, Appl. Phys. A 124, 50 (2018)

    Article  Google Scholar 

  33. Zakharova, K., Mednikova, A., Rumyantsev, V., Genusova T., Synthesis of boron carbide from boric acid and carbon-containing precursors. Sumy State University (2013)

  34. Chuvashova I., High pressure synthesis and investigations of properties of boron allotropes and boron carbide. The University of Bayreuth (2017)

  35. D.R. Tallant, T.L. Aselage, A.N. Campbell, D. Emin, Phys. Rev. B. 40, 5649–5656 (1989)

    Article  CAS  Google Scholar 

  36. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Appl. Phys. A. 124, 297 (2018)

    Article  Google Scholar 

  37. Singh P., Kaur G., Kumar R., Kumar U., Singh K., Kumar M., Bala R., Meena R., Kumar A., Boron carbide nanostructures: a prospective material as an additive in concrete, in AIP Conference Proceedings (2018) p. 030264

  38. J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, F. Hawthorne, J.D. Robertson, L. Firlej, B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, Carbon N. Y. 54, 208–214 (2013)

    Article  CAS  Google Scholar 

  39. V.B. Pawade, H.C. Swart, S.J. Dhoble, Renew. Sustain. Energy Rev. 52, 596–612 (2015)

    Article  CAS  Google Scholar 

  40. F. Peng, Z. Zhong, Y. Ma, Z. Huang, L. Ying, J. Xiong, S. Wang, X. Li, J. Peng, Y. Cao, J. Mater. Chem. C 6, 12355–12363 (2018)

    Article  CAS  Google Scholar 

  41. H.V.S. Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Opt. Spectrosc. 125, 928–932 (2018)

    Article  Google Scholar 

  42. M.S. Swapna, H.V.S. Devi, R. Sebastian, G. Ambadas, S. Sankararaman, Mater. Res. Express 4, 125602 (2017)

    Article  Google Scholar 

  43. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94, 3605–3628 (2011)

    Article  CAS  Google Scholar 

  44. M.W. Mortensen, P.G. Sørensen, O. Björkdahl, M.R. Jensen, H.J.G. Gundersen, T. Bjørnholm, Appl. Radiat. Isot. 64, 315–324 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This study was not funded by any agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Saritha Devi, H.V. & Sankararaman, S. Boron-rich boron carbide from soot: a low-temperature green synthesis approach. J. Korean Ceram. Soc. 57, 651–657 (2020). https://doi.org/10.1007/s43207-020-00066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00066-5

Keyword

Navigation