Skip to main content

Advertisement

Log in

Effect of magnetic particles adding into nanostructured hydroxyapatite–alginate composites for orthopedics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The composite materials based on hydroxyapatite (HA), sodium alginate (Alg)–magnetite (Fe3O4) were synthesized by the “wet chemistry method” under the influence of microwave irradiation and ultrasound. The biomagnetic samples were investigated by XRD, RFA, SEM, TEM and colorimetric assay methods. The cytotoxicity was assessed on fibroblasts cultures. It was found that the synthesis of Fe3O4 particles in the presence of Alg macromolecules leads to magnetite nanoparticles’ average size decreasing (up to 8 nm). The presence of samples with applied magnetite content (1% of HA) in a nutrient medium did not influence on cells viability. It was shown that the hydrogels were more conducive to cells survival and provide a greater degree of cell proliferation in comparison with beads. It was concluded that Fe3O4-loaded hydroxyapatite–alginate composites are characterized by good adhesive ability of the fibroblast cells and its bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Agarwal, A.J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 94, 53–62 (2015). https://doi.org/10.1016/j.addr.2015.03.013

    Article  CAS  Google Scholar 

  2. W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(01), 94–117 (1998). https://doi.org/10.1557/JMR.1998.0015

    Article  CAS  Google Scholar 

  3. T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, Nanomaterials and bone regeneration. Bone Res. (2015). https://doi.org/10.1038/boneres.2015.29

    Article  Google Scholar 

  4. A.E. Jakus, R.N. Shah, Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J. Biomed. Mater. Res. Part A. 105(1), 274–283 (2017). https://doi.org/10.1002/jbm.a.35684

    Article  CAS  Google Scholar 

  5. A. Turlybekuly, A. Sagidugumar, Y. Otarov et al., Bacterial cellulose/hydroxyapatite printed scaffolds for bone engineering. Nanomater. Biomed. Appl. Biosens. (2020). https://doi.org/10.1007/978-981-15-3996-1_1

    Article  Google Scholar 

  6. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.-H. Kang, S.-K. Kim, Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72, 269–281 (2015). https://doi.org/10.1016/j.ijbiomac.2014.07.008

    Article  CAS  Google Scholar 

  7. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  8. J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6(4), 1285–1309 (2013). https://doi.org/10.3390/ma6041285

    Article  CAS  Google Scholar 

  9. F.-Y. Hsu, R.-C. Weng, H.-M. Lin et al., A biomimetic extracellular matrix composed of mesoporous bioactive glass as a bone graft material. Microporous Mesoporous Mater. 212, 56–65 (2015). https://doi.org/10.1016/j.micromeso.2015.03.027

    Article  CAS  Google Scholar 

  10. A. Hajinasab, S. Saber-Samandari, S. Ahmadi, K. Alamara, Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2017.10.080

    Article  Google Scholar 

  11. E. Díaz, M. Valle, S. Ribeiro, S. Lanceros-Mendez, J. Barandiarán, Development of magnetically active scaffolds for bone regeneration. Nanomaterials 8(9), 678 (2018). https://doi.org/10.3390/nano8090678

    Article  CAS  Google Scholar 

  12. F. Márquez, G.M. Herrera, T. Campo et al., Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res. Lett. 7(1), 210 (2012). https://doi.org/10.1186/1556-276X-7-210

    Article  CAS  Google Scholar 

  13. V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. (2018). https://doi.org/10.1002/adhm.201700845

    Article  Google Scholar 

  14. M. Świȩtek, W. Tokarz, J. Tarasiuk, S. Wroński, M.B. Łazewicz, Magnetic polymer nanocomposite for medical application. Acta Phys. Pol. A. (2014). https://doi.org/10.12693/APhysPolA.125.891

    Article  Google Scholar 

  15. V. Mailänder, K. Landfester, Interaction of nanoparticles with cells. Biomacromol 10(9), 2379–2400 (2009). https://doi.org/10.1021/bm900266r

    Article  CAS  Google Scholar 

  16. V. Torchilin, Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58(14), 1532–1555 (2006). https://doi.org/10.1016/j.addr.2006.09.009

    Article  CAS  Google Scholar 

  17. K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, R. Zbořil, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589

    Article  CAS  Google Scholar 

  18. X. Hu, G. Liu, Y. Li, X. Wang, S. Liu, Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 137(1), 362–368 (2015). https://doi.org/10.1021/ja5105848

    Article  CAS  Google Scholar 

  19. X. Tian, L. Zhang, M. Yang et al., Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10(1), e1476 (2018). https://doi.org/10.1002/wnan.1476

    Article  Google Scholar 

  20. J. Lin, M. Wang, H. Hu et al., Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater. 28(17), 3273–3279 (2016). https://doi.org/10.1002/adma.201505700

    Article  CAS  Google Scholar 

  21. H. Arami, E. Teeman, A. Troksa et al., Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 9(47), 18723–18730 (2017). https://doi.org/10.1039/C7NR05502A

    Article  CAS  Google Scholar 

  22. N.M. Sundaram, S. Murugesan, Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy. Int. J. Nanomed. (2015). https://doi.org/10.2147/IJN.S79985

    Article  Google Scholar 

  23. J. Yang, S. Park, H. Yoon, Y. Huh, S. Haam, Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharm. 324(2), 185–190 (2006). https://doi.org/10.1016/j.ijpharm.2006.06.029

    Article  CAS  Google Scholar 

  24. Y. Zhao, T. Fan, J. Chen et al., Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces 174, 70–79 (2019). https://doi.org/10.1016/j.colsurfb.2018.11.003

    Article  CAS  Google Scholar 

  25. A. Hervault, N.T.K. Thanh, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6(20), 11553–11573 (2014). https://doi.org/10.1039/C4NR03482A

    Article  CAS  Google Scholar 

  26. M.K. Lima-Tenório, E.A. Gómez Pineda, N.M. Ahmad, H. Fessi, A. Elaissari, Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int. J. Pharm. 493(1–2), 313–327 (2015). https://doi.org/10.1016/j.ijpharm.2015.07.059

    Article  CAS  Google Scholar 

  27. S.V. Dorozhkin, Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 5(1), 9–70 (2016). https://doi.org/10.1007/s40204-015-0045-z

    Article  CAS  Google Scholar 

  28. E.A. Périgo, G. Hemery, O. Sandre et al., Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2(4), 041302 (2015). https://doi.org/10.1063/1.4935688

    Article  CAS  Google Scholar 

  29. A.S. Stanislavov, A.A. Yanovska, V.N. Kuznetsov, L.B. Sukhodub, L.F. Sukhodub, The comparison of magnetite nanospheres formation in polysaccharide covers by various ways of syntheses. J Nanoelectron Phys. 7(2), 02009 (2015)

    Google Scholar 

  30. A.S. Stanislavov, L.F. Sukhodub, L.B. Sukhodub, V.N. Kuznetsov, K.L. Bychkov, M.I. Kravchenko, Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials. Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2017.11.011

    Article  Google Scholar 

  31. A. Turlybekuly, A.D. Pogrebnjak, L.F. Sukhodub et al., Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.109965

    Article  Google Scholar 

  32. A. Pogrebnjak, L. Sukhodub, L. Sukhodub et al., Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles. Ceram. Int. 45(6), 7504–7514 (2019). https://doi.org/10.1016/j.ceramint.2019.01.043

    Article  CAS  Google Scholar 

  33. A.D. Pogrebnjak, L.F. Sukhodub, L. Sukhodub, O.V. Bondar, A. Turlybekuly, ZnO doped nanosized composite material based on hydroxyapatite and sodium alginate matrix. Adv. Thin Film Nanostruct. Mater. Coat. (2019). https://doi.org/10.1007/978-981-13-6133-3_35

    Article  Google Scholar 

  34. S. Stankic, S. Suman, F. Haque, J. Vidic, Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 14(1), 73 (2016). https://doi.org/10.1186/s12951-016-0225-6

    Article  CAS  Google Scholar 

  35. R.D. Sinclair, T.J. Ryan, Proteolytic enzymes in wound healing: the role of enzymatic debridement. Australas. J. Dermatol. 35(1), 35–41 (1994). https://doi.org/10.1111/j.1440-0960.1994.tb01799.x

    Article  CAS  Google Scholar 

  36. A.D. Pogrebnjak, C.-H. Kong, R.F. Webster et al., Antibacterial effect of Au implantation in ductile nanocomposite multilayer (TiAlSiY)N/CrN Coatings. ACS Appl. Mater. Interfaces 11(51), 48540–48550 (2019). https://doi.org/10.1021/acsami.9b16328

    Article  CAS  Google Scholar 

  37. A. Shypylenko, A.V. Pshyk, B. Grześkowiak et al., Effect of ion implantation on the physical and mechanical properties of Ti–Si–N multifunctional coatings for biomedical applications. Mater. Des. 110, 821–829 (2016). https://doi.org/10.1016/j.matdes.2016.08.050

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Ministry of Education and Science of the Republic of Kazakhstan (Grant no 0117PK00047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanzhol Turlybekuly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhodub, L.F., Sukhodub, L.B., Pogrebnjak, A.D. et al. Effect of magnetic particles adding into nanostructured hydroxyapatite–alginate composites for orthopedics. J. Korean Ceram. Soc. 57, 557–569 (2020). https://doi.org/10.1007/s43207-020-00061-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00061-w

Keywords

Navigation