Skip to main content

Recent progress of two-dimensional materials and metal–organic framework-based taste sensors

Abstract

In food industries, the detection of different tastes in low level is required to enhance the quality of products. Recently, 2-D materials and metal–organic framework (MOF) have attracted extensive attention owing to their unique properties, and they can be used in various applications, especially chemical and biochemical sensing. In this review, we investigate the recent progress of the 2-D materials and MOF in the taste sensing applications. From the review, we could conclude that these materials would be promising candidates for taste sensing applications, thereby leading to the development of food industry.

This is a preview of subscription content, access via your institution.

Fig. 1

Reproduced with permission [8]; Copyright 2016 Wiley

Fig. 2

Reproduced with permission [29]; Copyright 2013 AIP Publishing LLC

Fig. 3

Reproduced with permission [30]; Copyright 2019 IOP Publishing Ltd

Fig. 4

Reproduced with permission [32]; Copyright 2016 American Institute of Physics

Fig. 5
Fig. 6

(reproduced with permission [39]; Copyright 2018 Processes), b microwave and ultrasound method (Reproduced with permission [37]; Copyright 2015 Coordination Chemistry Reviews), and c electrochemical method (Reproduced with permission [38], Copyright 2016 The Royal Society of Chemistry)

Fig. 7

Reproduced with permission [33]; Copyright 2015 Elsevier

Fig. 8

Reproduced with permission [58]; Copyright 2017 Royal Society of Chemistry

Fig. 9

Reproduced with permission [59]; Copyright 2018 Elsevier

Fig. 10

Reproduced with permission [25]; Copyright 2019 Elsevier

Fig. 11

Reproduced with permission [69]; Copyright 2018 Elsevier

Fig. 12

Reproduced with permission [73]; Copyright 2015 Elsevier

References

  1. 1.

    A. Hasani, Q. Van Le, M. Tekalgne, M.-J. Choi, T.H. Lee, S.Y. Kim, H.W. Jang, Direct synthesis of two-dimensional MoS 2 on p-type Si and application to solar hydrogen production. NPG Asia Mater. 11(1), 1–9 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    A. Hasani, Q. Van Le, M. Tekalgne, M.-J. Choi, S. Choi, T.H. Lee, H. Kim, S.H. Ahn, H.W. Jang, S.Y. Kim, Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis. ACS Appl. Mater. Interfaces 11(33), 29910–29916 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    A. Hasani, M. Tekalgne, Q. Van Le, H.W. Jang, S.Y. Kim, Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 20, 20 (2019)

    Google Scholar 

  4. 4.

    A. Hasani, Q.V. Le, M. Tekalgne, M.-J. Choi, T.H. Lee, S.H. Ahn, H.W. Jang, S.Y. Kim, Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis. ACS Appl. Mater. Interfaces 11(33), 29910–29916 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    A. Hasani, J.N. Gavgani, R.M. Pashaki, S. Baseghi, A. Salehi, D. Heo, S.Y. Kim, M. Mahyari, Poly (3,4 ethylenedioxythiophene): poly (styrenesulfonate)/iron (III) porphyrin supported on S and N Co-doped graphene quantum dots as a hole transport layer in polymer solar cells. Sci. Adv. Mater. 9(9), 1616–1625 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    K.C. Kwon, S. Choi, K. Hong, C.W. Moon, Y.-S. Shim, D.H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9(7), 2240–2248 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    Q. Zhang, L. Tan, Y. Chen, T. Zhang, W. Wang, Z. Liu, L. Fu, Human-like sensing and reflexes of graphene-based films. Adv. Sci. 3(12), 1600130 (2016)

    Article  CAS  Google Scholar 

  9. 9.

    W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43(16), 5561–5593 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M. Khatami, A review on metal–organic frameworks: synthesis and applications. Trends Anal. Chem. 20, 20 (2019)

    Google Scholar 

  11. 11.

    M.T. Kapelewski, T.E. Runčevski, J.D. Tarver, H.Z. Jiang, K.E. Hurst, P.A. Parilla, A. Ayala, T. Gennett, S.A. FitzGerald, C.M. Brown, Record high hydrogen storage capacity in the metal–organic framework Ni2 (m-dobdc) at near-ambient temperatures. Chem. Mater. 30(22), 8179–8189 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    S. Kayal, B. Sun, A. Chakraborty, Study of metal–organic framework MIL-101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal–organic frameworks). Energy 91, 772–781 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112(2), 724–781 (2011)

    Article  CAS  Google Scholar 

  14. 14.

    J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43(16), 6011–6061 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    P.K. Thallapally, C.A. Fernandez, R.K. Motkuri, S.K. Nune, J. Liu, C.H. Peden, Micro and mesoporous metal–organic frameworks for catalysis applications. Dalton Trans. 39(7), 1692–1694 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    J. Duan, S. Chen, C. Zhao, Ultrathin metal–organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Liu, C.S. Gong, Y. Dai, Z. Yang, G. Yu, Y. Liu, M. Zhang, L. Lin, W. Tang, Z. Zhou, In situ polymerization on nanoscale metal–organic frameworks for enhanced physiological stability and stimulus–responsive intracellular drug delivery. Biomaterials 218, 119365 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    F. Su, Q. Jia, Z. Li, M. Wang, L. He, D. Peng, Y. Song, Z. Zhang, S. Fang, Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Micropor. Mesopor. Mater. 275, 152–162 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    S. Rojas, F.J. Carmona, C.R. Maldonado, P. Horcajada, T. Hidalgo, C. Serre, J.A. Navarro, E. Barea, Nanoscaled zinc pyrazolate metal–organic frameworks as drug-delivery systems. Inorg. Chem. 55(5), 2650–2663 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8(7), 1837–1866 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    R. Antwi-Baah, H. Liu, Recent hydrophobic metal–organic frameworks and their applications. Materials 11(11), 2250 (2018)

    Article  CAS  Google Scholar 

  22. 22.

    O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O.Z.R. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012)

    CAS  Article  Google Scholar 

  23. 23.

    H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, Ultrahigh porosity in metal–organic frameworks. Science 329(5990), 424–428 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    W. Meng, Y. Zeng, Z. Liang, W. Guo, C. Zhi, Y. Wu, R. Zhong, C. Qu, R. Zou, Tuning expanded pores in metal–organic frameworks for selective capture and catalytic conversion of carbon dioxide. Chemsuschem 11(21), 3751–3757 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    F. Wang, X. Chen, L. Chen, J. Yang, Q. Wang, High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite. Mater. Sci. Eng. C 96, 41–50 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    A. Chidambaram, K.C. Stylianou, Electronic metal–organic framework sensors. Inorg. Chem. Front. 5(5), 979–998 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34(1), 125–131 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    M. Govindhan, M. Amiri, A. Chen, Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron. 66, 474–480 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    B. Mailly-Giacchetti, A. Hsu, H. Wang, V. Vinciguerra, F. Pappalardo, L. Occhipinti, E. Guidetti, S. Coffa, J. Kong, T. Palacios, pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114(8), 084505 (2013)

    Article  CAS  Google Scholar 

  30. 30.

    H. Wang, P. Zhao, X. Zeng, C.D. Young, W. Hu, High-stability pH sensing with a few-layer MoS2 field-effect transistor. Nanotechnology 30(37), 375203 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    A. Kundu, R.K. Layek, A. Kuila, A.K. Nandi, Highly fluorescent graphene oxide-poly (vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl. Mater. Interfaces 4(10), 5576–5582 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    P. Li, D. Zhang, Y.E. Sun, H. Chang, J. Liu, N. Yin, Towards intrinsic MoS2 devices for high performance arsenite sensing. Appl. Phys. Lett. 109(6), 063110 (2016)

    Article  CAS  Google Scholar 

  33. 33.

    P. Kumar, A. Deep, K.-H. Kim, Metal organic frameworks for sensing applications. Trends Anal. Chem. 73, 39–53 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    V.V.E. Butova, M.A. Soldatov, A.A. Guda, K.A. Lomachenko, C. Lamberti, Metal–organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85(3), 280 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    A. Mahmood, W. Guo, H. Tabassum, R. Zou, Metal–organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6(17), 1600423 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    Y. Bian, N. Xiong, G. Zhu, Technology for the remediation of water pollution: a review on the fabrication of metal organic frameworks. Processes 6(8), 122 (2018)

    Article  CAS  Google Scholar 

  37. 37.

    N.A. Khan, S.H. Jhung, Synthesis of metal–organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 285, 11–23 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    W.-J. Li, M. Tu, R. Cao, R.A. Fischer, Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications and perspectives. J. Mater. Chem. A 4(32), 12356–12369 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    Y.-R. Lee, J. Kim, W.-S. Ahn, Synthesis of metal–organic frameworks: a mini review. Korean J. Chem. Eng. 30(9), 1667–1680 (2013)

    CAS  Article  Google Scholar 

  40. 40.

    M. Sánchez-Sánchez, N. Getachew, K. Diaz, M. Díaz-García, Y. Chebude, I. Diaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17(3), 1500–1509 (2015)

    Article  CAS  Google Scholar 

  41. 41.

    H. Reinsch, “Green” synthesis of metal–organic frameworks. Eur. J. Inorg. Chem. 2016(27), 4290–4299 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    F. Xie, T. Liu, L. Xie, X. Sun, Y. Luo, Metallic nickel nitride nanosheet: an efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sens. Actuators B Chem. 255, 2794–2799 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    P. Vennila, D.J. Yoo, A.R. Kim, Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications. J. Alloys Compd. 703, 633–642 (2017)

    CAS  Article  Google Scholar 

  44. 44.

    Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2011)

    Article  CAS  Google Scholar 

  45. 45.

    M. Allendorf, C. Bauer, R. Bhakta, R. Houk, Luminescent metal–organic frameworks. Chem. Soc. Rev. 38(5), 1330–1352 (2009)

    CAS  Article  Google Scholar 

  46. 46.

    N.S. Lopa, M.M. Rahman, F. Ahmed, S.C. Sutradhar, T. Ryu, W. Kim, A Ni-based redox-active metal–organic framework for sensitive and non-enzymatic detection of glucose. J. Electroanal. Chem. 822, 43–49 (2018)

    CAS  Article  Google Scholar 

  47. 47.

    P. Arul, S.A. John, Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: a non-enzymatic sensor for glucose. J. Electroanal. Chem. 799, 61–69 (2017)

    CAS  Article  Google Scholar 

  48. 48.

    H. Yamagiwa, S. Sato, T. Fukawa, T. Ikehara, R. Maeda, T. Mihara, M. Kimura, Detection of volatile organic compounds by weight-detectable sensors coated with metal–organic frameworks. Sci. Rep. 4, 6247 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    T. Lee, H.L. Lee, M.H. Tsai, S.-L. Cheng, S.-W. Lee, J.-C. Hu, L.-T. Chen, A biomimetic tongue by photoluminescent metal–organic frameworks. Biosens. Bioelectron. 43, 56–62 (2013)

    CAS  Article  Google Scholar 

  50. 50.

    L. Poretsky, Principles of Diabetes Mellitus (Springer, Berlin, 2010)

    Book  Google Scholar 

  51. 51.

    C. Divert, C. Chabanet, R. Schoumacker, C. Martin, C. Lange, S. Issanchou, S. Nicklaus, Relation between sweet food consumption and liking for sweet taste in French children. Food Qual. Prefer. 56, 18–27 (2017)

    Article  Google Scholar 

  52. 52.

    X. Zhang, Z. Zhang, Q. Liao, S. Liu, Z. Kang, Y. Zhang, Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite. Sensors 16(11), 1791 (2016)

    Article  CAS  Google Scholar 

  53. 53.

    R.A. Soomro, O.P. Akyuz, R. Ozturk, Z.H. Ibupoto, Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens. Actuators B Chem. 233, 230–236 (2016)

    CAS  Article  Google Scholar 

  54. 54.

    J. Cui, S.B. Adeloju, Y. Wu, Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection. Anal. Chim. Acta 809, 134–140 (2014)

    CAS  Article  Google Scholar 

  55. 55.

    Y. Koskun, A. Şavk, B. Şen, F. Şen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)

    CAS  Article  Google Scholar 

  56. 56.

    K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, L. Li, In situ fabrication of Ni (OH) 2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens. Actuators B Chem. 240, 979–987 (2017)

    CAS  Article  Google Scholar 

  57. 57.

    Q. Qian, Q. Hu, L. Li, P. Shi, J. Zhou, J. Kong, X. Zhang, G. Sun, W. Huang, Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. Sens. Actuators B Chem. 257, 23–28 (2018)

    CAS  Article  Google Scholar 

  58. 58.

    X. Xiao, S. Zheng, X. Li, G. Zhang, X. Guo, H. Xue, H. Pang, Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. J. Mater. Chem. B 5(26), 5234–5239 (2017)

    CAS  Article  Google Scholar 

  59. 59.

    Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B Chem. 278, 126–132 (2019)

    CAS  Article  Google Scholar 

  60. 60.

    I. Choi, Y.E. Jung, S.J. Yoo, J.Y. Kim, H.-J. Kim, C.Y. Lee, J.H. Jang, Facile synthesis of M-MOF-74 (M= Co, Ni, Zn) and its application as an electrocatalyst for electrochemical CO2 conversion and H2 production. J. Electrochem. Sci. Te. 8(1), 61–68 (2017)

    CAS  Article  Google Scholar 

  61. 61.

    D.-J. Lee, Q. Li, H. Kim, K. Lee, Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous Mesoporous Mater. 163, 169–177 (2012)

    CAS  Article  Google Scholar 

  62. 62.

    X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, S. Deng, Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation. Microporous Mesoporous Mater. 180, 114–122 (2013)

    CAS  Article  Google Scholar 

  63. 63.

    Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135(32), 11887–11894 (2013)

    CAS  Article  Google Scholar 

  64. 64.

    T.W. Murinzi, T.A. Clement, V. Chitsa, G. Mehlana, Copper oxide nanoparticles encapsulated in HKUST-1 metal–organic framework for electrocatalytic oxidation of citric acid. J. Solid State Chem. 268, 198–206 (2018)

    CAS  Article  Google Scholar 

  65. 65.

    L. He, Y. Chen, L. Shi, Y. Zhang, Application of copper-based heterogeneous catalysts in organic wastewater treatment. In: IOP Conference Series: Materials Science and Engineering, Vol. 207, pp. 012088

  66. 66.

    C. Wei, X. Li, F. Xu, H. Tan, Z. Li, L. Sun, Y. Song, Metal organic framework-derived anthill-like Cu@ carbon nanocomposites for nonenzymatic glucose sensor. Anal. Methods 6(5), 1550–1557 (2014)

    CAS  Article  Google Scholar 

  67. 67.

    X. Zhang, Y. Xu, B. Ye, An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 767, 651–656 (2018)

    CAS  Article  Google Scholar 

  68. 68.

    X. Zhang, J. Luo, P. Tang, J.R. Morante, J. Arbiol, C. Xu, Q. Li, J. Fransaer, Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF. Sens. Actuators B Chem. 254, 272–281 (2018)

    CAS  Article  Google Scholar 

  69. 69.

    W. Meng, Y. Wen, L. Dai, Z. He, L. Wang, A novel electrochemical sensor for glucose detection based on Ag@ ZIF-67 nanocomposite. Sens. Actuators B Chem. 260, 852–860 (2018)

    CAS  Article  Google Scholar 

  70. 70.

    A. Katoch, R. Bhardwaj, N. Goyal, S. Gautam, Synthesis, structural and optical study of Ni-doped metal–organic framework for adsorption based chemical sensor application. Vacuum 158, 249–256 (2018)

    CAS  Article  Google Scholar 

  71. 71.

    S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, R. Moos, Metal–organic frameworks for sensing applications in the gas phase. Sensors 9(3), 1574–1589 (2009)

    CAS  Article  Google Scholar 

  72. 72.

    K. Sivasankar, K.K. Rani, S.-F. Wang, R. Devasenathipathy, C.-H. Lin, Copper nanoparticle and nitrogen doped graphite oxide based biosensor for the sensitive determination of glucose. Nanomaterials 8(6), 429 (2018)

    Article  CAS  Google Scholar 

  73. 73.

    L. Shi, X. Zhu, T. Liu, H. Zhao, M. Lan, Encapsulating Cu nanoparticles into metal–organic frameworks for nonenzymatic glucose sensing. Sens. Actuators B Chem. 227, 583–590 (2016)

    CAS  Article  Google Scholar 

  74. 74.

    C.W. Lee, J.M. Suh, H.W. Jang, Chemical sensors based on 2-dimensional materials for selective detection of ions and molecules in liquid. Front. Chem. 7, 708 (2019)

    Article  CAS  Google Scholar 

  75. 75.

    D. Durgalakshmi, R.A. Rakkesh, J. Mohanraj, Graphene–metal–organic framework-modified electrochemical sensors, Graphene-Based Electrochemical Sensors for Biomolecules (Elsevier, New York, 2019), pp. 275–296

    Chapter  Google Scholar 

  76. 76.

    F. Kurniawan, V. Tsakova, V.M. Mirsky, Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanal. Int. J. Devot. Fundam. Pract. Aspects Electroanal. 18(19–20), 1937–1942 (2006)

    CAS  Google Scholar 

  77. 77.

    S. Cherevko, C.-H. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators B Chem. 142(1), 216–223 (2009)

    CAS  Article  Google Scholar 

  78. 78.

    H. Guo, Z. Huang, Y. Zheng, S. Weng, Electrodeposition of nickel nanoparticles modified glassy carbon electrode for nonenzymatic glucose biosensing. Int. J. Electrochem. Sci 10, 10703–10712 (2015)

    CAS  Google Scholar 

  79. 79.

    K.O. Iwu, A. Lombardo, R. Sanz, S. Scirè, S. Mirabella, Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens. Actuators B Chem. 224, 764–771 (2016)

    CAS  Article  Google Scholar 

  80. 80.

    L. Zhang, J. Zhang, C. Yang, G. Zhao, J. Mu, Y. Wang, Freestanding Cu nanowire arrays on Ti/Cr/Si substrate as tough nonenzymatic glucose sensors. RSC Adv. 5(101), 82998–83003 (2015)

    CAS  Article  Google Scholar 

  81. 81.

    H. Li, C.-Y. Guo, C.-L. Xu, A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosens. Bioelectron. 63, 339–346 (2015)

    CAS  Article  Google Scholar 

  82. 82.

    P. Suneesh, V.S. Vargis, T. Ramachandran, B.G. Nair, T.S. Babu, Co–Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose. Sens. Actuators B Chem. 215, 337–344 (2015)

    CAS  Article  Google Scholar 

  83. 83.

    M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, Ni–Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications. RSC Adv. 5(71), 57804–57814 (2015)

    CAS  Article  Google Scholar 

  84. 84.

    Q. Yi, W. Yu, F. Niu, Novel nanoporous binary Au–Ru electrocatalysts for glucose oxidation. Electroan. Int. J. Devot. Fundam. Pract. Aspects Electroanal. 22(5), 556–563 (2010)

    CAS  Google Scholar 

  85. 85.

    S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, Z. Yang, Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Phys. Chem. Chem. Phys. 15(26), 10904–10913 (2013)

    CAS  Article  Google Scholar 

  86. 86.

    Z. Li, Y. Chen, Y. Xin, Z. Zhang, Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  87. 87.

    G. Wang, X. Lu, T. Zhai, Y. Ling, H. Wang, Y. Tong, Y. Li, Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4(10), 3123–3127 (2012)

    CAS  Article  Google Scholar 

  88. 88.

    R. Ding, J. Liu, J. Jiang, J. Zhu, X. Huang, Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4(12), 4003–4008 (2012)

    CAS  Article  Google Scholar 

  89. 89.

    S. SoYoon, A. Ramadoss, B. Saravanakumar, S.J. Kim, Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application. J. Electroanal. Chem. 717, 90–95 (2014)

    Article  CAS  Google Scholar 

  90. 90.

    H.S. Song, O.S. Kwon, S.H. Lee, S.J. Park, U.-K. Kim, J. Jang, T.H. Park, Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett. 13(1), 172–178 (2013)

    CAS  Article  Google Scholar 

  91. 91.

    D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7(4), 3540–3546 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Future Material Discovery Program (2017M3D1A1039379), and in part by the Basic Research Laboratory (2018R1A4A1022647) of the National Research Foundation of Korea (NRF) funded by the Korean government

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soo Young Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasani, A., Do, H.H., Tekalgne, M. et al. Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. J. Korean Ceram. Soc. 57, 353–367 (2020). https://doi.org/10.1007/s43207-020-00047-8

Download citation

Keywords

  • Two-dimensional materials
  • Metal–organic frameworks
  • Taste sensor
  • Glucose