Abstract
A direct utilization of hydrocarbon fuels in solid-oxide fuel cell (SOFC) has been considered a worthwhile and realizable goal. Admittedly, while great strides have been made toward this development goal, there still remain Ni-based anode materials issues to be resolved. In this regard, this study focuses on Sr effect on electrical and electrochemical behaviors in PrBaMn2O5+δ (PBM) to be employed as an anode in SOFC operation under hydrogen and hydrocarbon fuels. The electrical conductivity of A-site layered PrBa0.8Sr0.2Mn2O5+δ (PBSM) oxide reaches 3.74 S cm−1 at 800 °C in H2, which is higher than that of PBM due to doping smaller Sr into Ba site and fully meets the requirement to be employed as an anode material. The electrochemical performance is evaluated using La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte-supported cell based on A-site layered PBSM anode with Co–Fe catalysts, and shows peak power density around 1.38 and 0.68 W cm−2 at 800 °C in H2 and C3H8, respectively. Considering the electrical and electrochemical properties, A-site layered PBSM might offer the opportunities to discover and explore new high-performance anode material for direct hydrocarbon SOFCs.
Similar content being viewed by others
References
B.C.H. Steel, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)
Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435, 795–798 (2005)
Z. Shao, S.M. Haile, A high performance cathode for the next generation solid-oxide fuel cells. Nature 431, 170–173 (2004)
S. Mclntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)
W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2004)
Z. Zhan, S.A. Barnett, An octane-fueled solid oxide fuel cell. Science 308, 844–847 (2005)
L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126–129 (2009)
S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)
E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)
S.P. Jiang, S.H. Chan, A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 39, 4405–4439 (2004)
X.M. Ge, S.H. Chan, Q.L. Liu, Q. Sun, Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv. Energy Mater. 2, 1156–1181 (2012)
P. Boldrin, E. Ruiz-Trejo, J. Mermelstein, J.B. Menendez, T.R. Reina, N.P. Brandon, Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 116, 13633–13684 (2016)
D.M. Bastidas, S. Tao, J.T.S. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 16, 1603–1605 (2006)
S. Zha, Z. Cheng, M. Liu, Sulfur poisoning and regeneration of ni-based anodes in solid oxide fuel cells. J. Electrochem. Soc. 154, B201–B206 (2007)
B.L. Augusto, F.B. Noronha, F.C. Fonseca, F.N. Tabuti, R.C. Colman, L.V. Mattos, Nickel/gadolinium-doped ceria anode for direct ethanol solid oxide fuel cell. Int. J. Hydrog. Energy 39, 11196–11209 (2014)
A.A.A. da Silva, N. Bion, F. Epron, S. Baraka, F.C. Fonseca, R.C. Rabelo-Neto, L.V. Mattos, F.B. Noronha, Effect of the type of ceria dopant on the performance of Ni/CeO2 SOFC anode for ethanol internal reforming. Appl. Catal. B Environ. 206, 626–641 (2017)
M. Liu, R. Peng, D. Dong, J. Gao, X. Liu, G. Meng, Direct liquid methanol-fueled solid oxide fuel cell. J. Power Sour. 185, 188–192 (2008)
S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 165–167 (2000)
S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)
J.C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, W. Zhou, J.T.S. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439, 568–571 (2006)
Y.H. Huang, I.D. Ronald, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006)
G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Donner, C.L. Chen, L. Reimus, P. Brodersen, A.A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 024103 (2006)
G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17, 2500–2505 (2007)
S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H.Y. Jeong, Y. Choi, G. Kim, M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Sci. Rep. 3, 2426 (2013)
S. Choi, J. Shin, G. Kim, The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. J. Power Sour. 201, 10–17 (2012)
S. Sengodan, S. Ahn, J. Shin, G. Kim, Oxidation–reduction behavior of La0.8Sr0.2ScyMn1−yO3±δ (y = 0.2, 0.3, 0.4): defect structure, thermodynamic and electrical properties. Solid State Ion. 228, 25–31 (2012)
M.R. Lees, J. Barratt, G. Balakrishnan, D.M.K. Paul, M. Yethiraj, Influence of charge and magnetic ordering on the insulator-metal transition in Pr1−xCaxMnO3. Phys. Rev. B Condens. Matter 52, R14303–R14307 (1995)
M.R. Lees, J. Barratt, G. Balakrishnan, D.M.K. Paul, C.D. Dewhurst, Low-temperature magnetoresistance and magnetic ordering in Pr1−xCaxMnO3. J. Phys. Condens. Matter 8, 2967–2979 (1996)
S. Choi, J. Shin, G. Kim, The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 3, 6088–6095 (2015)
S. Choi, S. Sengodan, S. Park, Y.-W. Ju, J. Kim, J. Hyodo, H.Y. Jeong, T. Ishihara, J. Shin, G. Kim, A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ. J. Mater. Chem. A 4, 1747–1753 (2016)
O. Kwon, S. Sengodan, K. Kim, G. Kim, H.Y. Jeong, J. Shin, Y.-W. Ju, J.W. Han, G. Kim, Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8, 15967 (2017)
Y. Zhang, H. Zhao, Z. Du, K. Świerczek, Y. Li, High-performance smbamn2o5+δ electrode for symmetrical solid oxide fuel cell. Chem. Mater. 31, 3784–3793 (2019)
V.V. Vashook, S.P. Tolochko, I.I. Yushkevich, L.V. Makhnach, I.F. Kononyuk, H. Altenburg, J. Hauck, H. Ullmann, Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0 ≤ x ≤ 0.5). Solid State Ion. 110, 245–253 (1998)
S. Park, S. Choi, J. Kim, J. Shin, G. Kim, Strontium doping effect on high-performance PrBa1−xSrxCo2O5+δ as a cathode material for IT-SOFCs. ECS Electrochem Lett 1(5), F29–F32 (2012)
S. Yoo, S. Choi, J. Kim, J. Shin, G. Kim, Investigation of layered perovskite type NdBa1−xSrxCo2O5+δ (x = 0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 100, 44–50 (2013)
Z.G. Lu, J.H. Zhu, Z.H. Bi, X.C. Lu, A Co–Fe alloy as alternative anode for solid oxide fuel cell. J. Power Sour. 180, 172–175 (2008)
A.A. Mirzaei, A.B. Babaei, M. Galavy, A. Youssefi, A silica supported Fe–Co bi-metallic catalyst prepared by the sol/gel technique: operating conditions, catalytic properties and characterization. Fuel Process. Technol. 91, 335–347 (2010)
T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Oxidation and steam reforming of CH4 on Ni and Fe anodes under low humidity conditions in solid oxide fuel cells. J. Electrochem. Soc. 143, 1161–1168 (1996)
O.A. Marina, M. Mogensen, High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode. Appl. Catal. Gen. 189, 117–126 (1999)
Acknowledgements
This research was supported by Kumoh National Institute of Technology (2018-104-150)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Choi, S. Electrochemical properties of Sr-doped layered perovskite as a promising anode material for direct hydrocarbon SOFCs. J. Korean Ceram. Soc. 57, 409–415 (2020). https://doi.org/10.1007/s43207-020-00045-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43207-020-00045-w