Skip to main content

Review on characteristics of metakaolin-based geopolymer and fast setting


The setting of metakaolin-based geopolymer depends on the raw materials and mix proportions. Setting, when material is cured at room temperature, takes about 1 day and is longer than setting time of Portland cement. For the fast setting of geopolymers, some studies increased the curing temperature or used raw materials with high CaO content. Also, Ca2+ and Mg2+ compounds were used as additives. Setting can be easily controlled and accelerated by adding Ca2+ compounds. However, it has been reported that knowledge of the reaction mechanism and final products between Ca2+ and geopolymers is still limited. In this study, we investigated the characteristics of metakaolin-based geopolymers and methods for fast setting of geopolymers, and made hypotheses about the reaction mechanism between Ca2+ and geopolymers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    J.L. Provis, J.S.J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications (Woodhead Publishing, UK, 2009)

    Book  Google Scholar 

  2. 2.

    J. Davidovits, Geopolymers: inorganic polymeric materials. J. Therm. Anal. 37, 1633–1656 (1991)

    CAS  Article  Google Scholar 

  3. 3.

    D. Hardjito, B.V. Rangan, Development and properties of low calcium fly ash based geopolymer concrete. Research report GC1 (Curtin University, Perth, 2005)

    Google Scholar 

  4. 4.

    V.F.F. Barbosa, K.J. MacKenzie, C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2, 309–317 (2009)

    Article  Google Scholar 

  5. 5.

    T. Bakharev, Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 35(6), 1233–1246 (2005)

    CAS  Article  Google Scholar 

  6. 6.

    L. Vickers, A. Van Riessen, W.D. Rickard, Fire-resistant geopolymers: role of fibres and fillers to enhance thermal properties (Springer, Singapore, 2015)

    Book  Google Scholar 

  7. 7.

    H.R. Brendley, Alkali ash material: a novel fly ash-based cement. Environ. Sci. Technol. 37, 3454–3457 (2003)

    Article  CAS  Google Scholar 

  8. 8.

    H.W. Nugteren, M.B. Ogundiran, G.J. Witkamp, M. Kreutzer, Coal fly ash activated by waste sodium aluminate solutions as an immobilizer for hazardous waste (In World of Coal Ash (WOCA) Conference, Denver, 2011)

    Google Scholar 

  9. 9.

    A. Fernández-Jiménez, A. Palomo, Alkaline activation, procedure for transforming fly ash into new materials. Part I: applications (World of Coal Ash (WOCA) Conference, Denver, 2011)

    Google Scholar 

  10. 10.

    S. Lee, A. van Riessen, C.M. Chon, N.H. Kang, H.T. Jou, Y.J. Kim, Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J. Hazard. Mater. 305, 59–66 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    S. Aggoun, M. Cheikh-Zouaoui, N. Chikh, R. Duval, Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages. Constr. Build. Mater. 22(2), 106–110 (2008)

    Article  Google Scholar 

  12. 12.

    X. Chen, A. Sutrisno, L.J. Struble, Effects of calcium on setting mechanism of metakaolin-based geopolymer. J. Am. Ceram. Soc. 01(2), 957–968 (2018)

    Article  CAS  Google Scholar 

  13. 13.

    B.B. Kenne Diffo, A. Elimbi, M. Cyr, J. Dika Manga, H. Tchakoute Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 3(1), 130–138 (2018)

    Article  Google Scholar 

  14. 14.

    X. Chen, A. Sutrisno, L.Y. Zhu, L.J. Struble, Setting and nanostructural evolution of metakaolin geopolymer. J. Am. Ceram. Soc. 100(5), 2285–2295 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    A.A. Siyal, K.A. Azizli, Z. Man, H. Ullah, Effects of parameters on the setting time of fly ash based geopolymers using Taguchi method. Proc. Eng. 148, 302–307 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    P. Nath, P.K. Sarker, V.B. Rangan, Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Proc. Eng. 125, 601–607 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    B. Mo, H. Zhu, X. Cui, Y. He, S. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay. Sci. 99, 144–148 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    D. Hardjito, C.C. Cheak, C.L. Ing, Strength and setting times of low calcium fly ash based geoplymer. Mod. Appl. Sci. 2(4), 3–11 (2008)

    CAS  Article  Google Scholar 

  19. 19.

    E.I. Diaz, E.N. Allouche, S. Eklund, Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89(5), 992–996 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    P. Chindaprasirt, P. De Silva, K. Sagoe-Crentsil, S. Hanjitsuwan, Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 47(12), 4876–4883 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    P. Topark-Ngarm, P. Chindaprasirt, V. Sata, Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J. Mater. Civ. Eng. 27(7), 1–7 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    B. Kim, S. Lee, J. Seo, S. Cho, Benefits of adding calcium hydroxide to metakaolin-based geopolymers on fast setting and strength enhancement. International Conference on Alkali Activated Materials and Geopolymers: Verstaile materials offering high performance and low emissions, Tomar, Portugal (2018)

  23. 23.

    P. Suraneni, S. Puligilla, E.H. Kim, X. Chen, L.J. Struble, P. Mondal, Monitoring setting of geopolymers. Adv. Civ. Eng. 3(1), 1–16 (2014)

    Google Scholar 

  24. 24.

    W.K.W. Lee, J.S.J. Van Deventer, The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 32, 577–584 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    P. Rovnaník, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24(7), 1176–1183 (2010)

    Article  Google Scholar 

  26. 26.

    J. Temuujin, A. Van Riessen, R. Williams, Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 167(1-3), 82–88 (2009)

    CAS  Article  Google Scholar 

  27. 27.

    R. Si, S. Guo, Q. Dai, Influence of calcium content on the atomic structure and phase formation of alkali-activated cement binder. J. Am. Ceram. Soc. 102(3), 1479–1494 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    P.R. Suitch, Mechanism for the dehydroxylation of kaolinite, dickite, and nacrite from room temperature to 455 °C. J. Am. Ceram. Soc. 69(1), 61–65 (1986)

    CAS  Article  Google Scholar 

  29. 29.

    G.W. Brindley, M. Nakahira, Kinetics of dehydroxylation of kaolinite and halloysite. Am. Ceram. Soc. 40(10), 346–350 (1957)

    CAS  Article  Google Scholar 

  30. 30.

    S. Lee, H.S. Moon, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J. Am. Ceram. Soc. 82(10), 2841–2848 (1999)

    CAS  Article  Google Scholar 

  31. 31.

    I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, high-temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)

    CAS  Article  Google Scholar 

  32. 32.

    D. Massiot, P. Dion, J.F.O. Alcover, F. Bergaya, 27Al and 29Si MAS NMR study of kaolinite thermal decomposition by controlled rate thermal analysis. J. Am. Ceram. Soc. 78(11), 2940–2944 (1995)

    CAS  Article  Google Scholar 

  33. 33.

    R. Siddique, J. Klaus, Influence of metakaolin on the properties of mortar and concrete: a review. Appl. Clay Sci. 43(3-4), 392–400 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40(9), 1341–1349 (2010)

    CAS  Article  Google Scholar 

  35. 35.

    S. Lee, Y.J. Kkim, H.S. Moon, Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation. J. Am. Ceram. Soc. 86(1), 174–176 (2003)

    CAS  Article  Google Scholar 

  36. 36.

    R.S. Ribeiro, M.S. Riberio, W.M. Kriven, A review of particle- and fiberreinforced metakaolin-based geopolymer composites. J. Ceram Sci. Tchnol. 8(3), 307–322 (2017)

    CAS  Google Scholar 

  37. 37.

    P. Duxson, G. Lukey, F. Separovic, J.S.J. Van Deventer, Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44(4), 832–839 (2005)

    CAS  Article  Google Scholar 

  38. 38.

    P. Duxson, J.L. Provis, G.C. Lukey, F. Separovic, J.S.J. Van Deventer, 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7), 3028–3036 (2005)

    CAS  Article  Google Scholar 

  39. 39.

    E.H. Kim, “Understanding effects of silicon/aluminum ratio and calcium hydroxide on chemical composition, nanostructure and compressive strength for metakalin geopolkymers”, in Master's thesis (University of Illinois at Urbana-Champaign, USA, 2012)

    Google Scholar 

  40. 40.

    P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2006)

    Article  CAS  Google Scholar 

  41. 41.

    K.J.D. MacKenzie, I.W.M. Brown, R.H. Meinhold, M.E. Bowden, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I, metakaolinite. J. Am. Ceram. Soc. 68(6), 293–297 (1985)

    CAS  Article  Google Scholar 

  42. 42.

    J.S.J. Van Deventer, J.L. Provis, P. Duxson, G.C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139(3), 506–513 (2007)

    Article  CAS  Google Scholar 

  43. 43.

    P. Duxson, S.W. Mallicoat, G.C. Lukey, W.M. Kriven, J.S.J. Van Deventer, The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A 292(1), 8–20 (2007)

    CAS  Article  Google Scholar 

  44. 44.

    P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. Van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269(1-3), 47–58 (2005)

    CAS  Article  Google Scholar 

  45. 45.

    M. Rowles, B. O'Connor, Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13(5), 1161–1165 (2003)

    CAS  Article  Google Scholar 

  46. 46.

    L. Chen, Z. Wang, Y. Wang, J. Feng, Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 9(9), 767 (2016)

    Article  CAS  Google Scholar 

  47. 47.

    P. Duxson, “The structure and thermal evolution of metakaolin geopolymers,” in Ph.D. Thesis, University of Melbourne, Australia, 2006.

  48. 48.

    H. Rahier, B. Van Mele, M. Biesemans, J. Wastiels, X. Wu, Low-temperature synthesized aluminosilicate glasses. Part I Low-temperature reaction stoichiometry and structure of a model compound. J. Mater. Sci. 31, 71–79 (1996)

    CAS  Article  Google Scholar 

  49. 49.

    M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 47, 1468–1478 (2013)

    Article  Google Scholar 

  50. 50.

    A. Tsitouras, T. Perraki, M. Perraki, S. Tsivilis, G. Kakali, The effect of synthesis parameters on the structure and properties of metakaolin based geopolymers. Mater. Sci. Forum. 636, 149–154 (2010)

    Article  CAS  Google Scholar 

  51. 51.

    T. Luukkonen, M. Sarkkinen, K. Kemppainen, J. Rämö, U. Lassi, Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Appl. Clay Sci. 119, 266–276 (2016)

    CAS  Article  Google Scholar 

  52. 52.

    J. Davidovits, “Geopolymer chemistry and applications,” Geopolymer Institute, 2008.

  53. 53.

    H.M. Khater, Effect of calcium on geopolymerization of aluminosilicate wastes. J. Mater. Civil Eng. 24(1), 92–101 (2012)

    CAS  Article  Google Scholar 

  54. 54.

    K.J.D. MacKenzie, M.E. Smith, A. Wong, A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. J. Mater. Chem. 17(48), 5090–5096 (2007)

    CAS  Article  Google Scholar 

  55. 55.

    C.K. Yip, G.C. Lukey, J.S.J. Van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005)

    CAS  Article  Google Scholar 

  56. 56.

    L. Struble, The effect of water on maleic acid and salicylic acid extraction. Cem. Concr. Res. 15(4), 631–636 (1985)

    CAS  Article  Google Scholar 

  57. 57.

    A. Fernández-Jiménez, A.G. De La Torre, A. Palomo, G. López-Olmo, M.M. Alonso, M.A.G. Aranda, Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel 85(14-15), 1960–1969 (2006)

    Article  CAS  Google Scholar 

  58. 58.

    C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    CAS  Article  Google Scholar 

  59. 59.

    S. Puligilla, P. Mondal, Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 43, 70–80 (2013)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sujeong Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Lee, S. Review on characteristics of metakaolin-based geopolymer and fast setting. J. Korean Ceram. Soc. 57, 368–377 (2020).

Download citation


  • Metakaolin
  • Metakaolin-based geopolymer
  • Setting
  • Fast setting
  • Calcium