Skip to main content
Log in

Microwave dielectric properties of Mg4Nb2−x(Zr1/2W1/2)xO9 ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The relationship between the microwave dielectric properties and structural characteristics of Mg4Nb2−x(Zr1/2W1/2)xO9 (0.05 ≤ x ≤ 0.15) ceramics was investigated along with the microwave dielectric properties of Mg4Nb2−x(Al1/3W2/3)xO9 (0.05 ≤ x ≤ 0.15) ceramics for comparison. The quality factors (Qf) of Mg4Nb2−x(Zr1/2W1/2)xO9 (MNZW) and Mg4Nb2−x(Al1/3W2/3)xO9 (MNAW) were proportional to the average bond valence of the Nb-sites. Mg4Nb1.95(Zr1/2W1/2)0.05O9 (Vavg.B= 3.014), which has a higher average bond valence (VB) than that of Mg4Nb2O9 (VB = 2.991), showed an excellent Qf; however, Qf decreased with further substitution. With an increase in the substitution content, the dielectric constant (K) of the specimens decreased, because the dielectric polarizability of the Nb5+(3.97 Å3) was larger than that of the substitution ions such as (Zr1/2W1/2)5+ (3.225 Å3) and (Al1/3W2/3)5+ (2.397 Å3). The temperature coefficients of resonant frequency (TCF) of the specimens decrease as the K value decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.S. Patel, A review paper on the design of dielectric resonator antenna for wireless applications. Int. J. Res. Dev. Technol. 4(1), 26–30 (2015)

    Google Scholar 

  2. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2001)

    Article  CAS  Google Scholar 

  3. H. Ohsato, J. Varghese, T. Vahera, J.S. Kim, M.T. Sebastian, H. Jantunen, M. Iwata, Micro/millimeter-wave dielectric indialite/cordierite glass-ceramics applied as LTCC and direct casting substrates: current status and prospects. J. Korean Ceram. Soc. 56(6), 526–533 (2019)

    Article  CAS  Google Scholar 

  4. C.-B. Hong, S. Kim, S.-H. Kwon, S.-O. Yoon, Microwave dielectric properties of (Ba1−xNax)(Mg0.5−2xY2xW0.5−xTax)O3 ceramics. J. Korean Ceram. Soc. 56(4), 399–402 (2019)

    Article  CAS  Google Scholar 

  5. A. Kan, H. Ogawa, Low-temperature synthesis, and microwave dielectric properties of Mg4Nb2O9 ceramics synthesized by a precipitation method. J. Alloys Compd. 364, 249 (2004)

    Article  Google Scholar 

  6. A. Kan, H. Ogawa, A. Yokoi, Y. Nakamura, Crystal structural refinement of corundum-structured A4M2O9(A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction. J. Eur. Ceram. Soc. 27, 2977–2981 (2007)

    Article  CAS  Google Scholar 

  7. A. Kan, H. Ogawa, Microwave Dielectric Properties of Corundum-Structured (Mg4−xMx)(Nb2−yAy)O9 (M = Mn, Co, and Zn; A = Ta, and Sb) Ceramics. in 2007 Sixteenth IEEE international symposium on the applications of ferroelectrics, IEEE (2007), pp. 519–522

  8. H. Ogawa, H. Taketani, A. Kan, A. Fujita, G. Zouganelis, Evaluation of electronic state of Mg4(Nb2−xSbx)O9 microwave dielectric ceramics by first principle calculation method. J. Eur. Ceram. Soc. 25, 2859–2863 (2005)

    Article  CAS  Google Scholar 

  9. A. Kan, H. Ogawa, A. Yokoi, H. Ohsato, Low-temperature sintering and microstructure of Mg4(Nb2-xVx)O9 microwave dielectric ceramic by V substitution for Nb. Jpn. J. Appl. Phys. 42, 6154–6157 (2003)

    Article  CAS  Google Scholar 

  10. H.T. Wu, L.X. Li, B2O3 additives on sintering and microwave dielectric behaviours of Mg4Nb2O9 ceramics synthesized through the aqueous sol–gel process. J. Sol Gel. Sci. Technol. 58(1), 48–55 (2011)

    Article  CAS  Google Scholar 

  11. J.H. Kim, E.S. Kim, Microwave dielectric properties of Mg4Nb2O9-based ceramics with (BxW1−x)5+ substitutions at Nb5+ sites (B = Li, Mg, Al, Ti). Ceram. Int. 43, S339–S342 (2017)

    Article  CAS  Google Scholar 

  12. H.J. Jo, E.S. Kim, Enhanced quality factor of MgTiO3 ceramics by isovalent Ti-site substitution. Ceram. Int. 42, 5479–5486 (2016)

    Article  CAS  Google Scholar 

  13. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  14. T. Roisnel, J.R. Carvajal, WinPLOTR, a windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378–381, 118–123 (2001)

    Article  Google Scholar 

  15. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  16. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, Y. Ishikawa, Precise measurement method for temperature coefficient of microwaved dielectric resonator material. Microw. Symp. Dig. 87, 277–280 (1987)

    Article  Google Scholar 

  17. D.M. Iddles, A.J. Bell, A.J. Moulson, Between dopants, microstructure and the microwave dielectric properties of ZrO2–TiO2–SnO2 ceramics. J. Mater. Sci. 27, 6303–6310 (1992)

    Article  CAS  Google Scholar 

  18. I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B41, 244–247 (1985)

    Article  CAS  Google Scholar 

  19. I.D. Brown, K.U. Kang, Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr. B32, 1957–1959 (1976)

    Article  CAS  Google Scholar 

  20. N.E. Brese, M.O. Keeffe, Bond-valence parameters for solids. Acta Crystallogr. B47, 192–197 (1991)

    Article  CAS  Google Scholar 

  21. S.K. Singh, V.R.K. Murthy, Crystal structure, raman spectroscopy and microwave dielectric properties of layered-perovskite BaA2Ti3O10 (A = Na, Nd and Sm) compounds. Mater. Chem. Phys. 160, 187–193 (2015)

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  23. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593–1600 (1963)

    Article  CAS  Google Scholar 

  24. P. Liu, E.S. Kim, K.H. Yoon, Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Nb2/3)O3−δ ceramics. Jpn. J. Appl. Phys. 40(9), 5769–5773 (2001)

    Article  CAS  Google Scholar 

  25. E.L. Colla, I.M. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of the relatively permittivity. J. Appl. Phys. 74, 3414–3425 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kyonggi University Research Grant 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, E.S. Microwave dielectric properties of Mg4Nb2−x(Zr1/2W1/2)xO9 ceramics. J. Korean Ceram. Soc. 57, 314–320 (2020). https://doi.org/10.1007/s43207-020-00035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00035-y

Keywords

Navigation