Skip to main content
Log in

Large enhancement of the photocurrent density in N-doped Cu3N films through bandgap reduction

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Copper nitride (Cu3N) has attracted wide attention for solar energy conversion applications owing to suitable Eg of 1.6–1.9 eV, non-toxicity, and possibility to fabricate homojunction solar cells. The Cu3N has a body-centered site of anti-ReO3 structure, which can be easily occupied by transition metals. Hence, many studies on the band gap tuning of Cu3N have been conducted with doping of various elements. However, N-doped Cu3N film has not been reported experimentally yet although it was theoretically predicted to have very stable doping and new partially filled narrow band gap. Herein, via systematically controlling the nitrogen partial pressure (R = N2/N2 + Ar), we successfully fabricated N-doped Cu3N film using reactive RF sputtering. The N-doped Cu3N film (only specific R = 0.5) exhibits significantly reduced optical bandgap (1.1 eV) and improved photocurrent density (1.66 mA/cm2 at 10 V) compared with that of pristine Cu3N film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Khadka, J. Kim, Band gap engineering of alloyed Cu2ZnGexSn1–xQ4 (Q = S, Se) films for solar cell. J. Phys. Chem. C 119, 1706–1713 (2015)

    CAS  Google Scholar 

  2. D. Pan, X. Wang, Z.H. Zhou, W. Chen, C. Xu, Y. Lu, Synthesis of quaternary semiconductor nanocrystals with tunable band gaps. Chem. Mater. 21, 2489–2493 (2009)

    CAS  Google Scholar 

  3. Y.-H.A. Wang, X. Zhang, N. Bao, B. Lin, A. Gupta, Synthesis of shape-controlled monodisperse wurtzite CuInxGa1–xS2 semiconductor nanocrystals with tunable band gap. J. Am. Chem. Soc. 133, 11072–11075 (2011)

    CAS  Google Scholar 

  4. C. Malerba, C.L.A. Ricardo, M. D’Incau, F. Biccari, P. Scardi, A. Mittiga, Nitrogen doped Cu2O: a possible material for intermediate band solar cells? Sol. Energy Mater. Sol. Cells 105, 192–195 (2012)

    CAS  Google Scholar 

  5. H. An, J.Y. Han, B. Kim, J. Song, S.Y. Jeong, C. Franchini, C.W. Bark, S. Lee, Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction. Sci. Rep. 6, 28313 (2016)

    CAS  Google Scholar 

  6. I. Mukherjee, S. Chatterjee, N.A. Kulkarni, Band gap tuning and room-temperature photoluminescence of a physically self-assembled Cu2O nanocolumn array. J. Phys. Chem. C 120, 1077–1082 (2016)

    CAS  Google Scholar 

  7. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr., H.N. Lee, Wide band gap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012)

    Google Scholar 

  8. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454–456 (2002)

    CAS  Google Scholar 

  9. M.B. Ortuño-López, M. Sotelo-Lerma, A. Mendoza-Galván, R. Ramirez-Bon, Optical band gap tuning and study of strain in CdS thin films. Vacuum 76, 181–184 (2004)

    Google Scholar 

  10. P. Pistor, D. Greiner, C.A. Kaufmann, S. Brunken, M. Gorgoi, A. Steigert, W. Calvet, I. Lauermann, R. Klenk, T. Unold, Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment. Appl. Phys. Lett. 105, 063901 (2014)

    Google Scholar 

  11. W.N. Shafarman, R. Klenk, B.E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap. J. Appl. Phys. 79, 7324–7328 (1996)

    CAS  Google Scholar 

  12. E. Handick, P. Reinhard, J.-H. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, M. Gorgoi, E. Ikenaga, N. Koch, R.G. Wilks, Potassium postdeposition treatment-induced band gap widening at Cu(In, Ga)Se2 surfaces—reason for performance leap? ACS Appl. Mater. Interfaces. 7, 27414–27420 (2015)

    CAS  Google Scholar 

  13. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, Tunable band gap Cu2ZnSnS4xSe4(1–x) nanocrystals: experimental and first-principles calculations. CrystEngComm 13, 2222–2226 (2011)

    CAS  Google Scholar 

  14. V.A. Akhavan, T.B. Harvey, C.J. Stolle, D.P. Ostrowski, M.S. Glaz, B.W. Goodfellow, M.G. Panthani, D.K. Reid, D.A.V. Bout, B.A. Korgel, Influence of composition on the performance of sintered cu (in, ga) Se2 nanocrystal thin-film photovoltaic devices. ChemSusChem. 6, 481–486 (2013)

    CAS  Google Scholar 

  15. A. Zakutayev, Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A. 4, 6742–6754 (2016)

    CAS  Google Scholar 

  16. R.M. Richards, D.S. Ginley, A. Zakutayev, Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430 (2014)

    Google Scholar 

  17. A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014)

    CAS  Google Scholar 

  18. J. Xiao, M. Qi, Y. Cheng, A. Jiang, Y. Zeng, J. Ma, Influences of nitrogen partial pressure on the optical properties of copper nitride films. RSC Adv. 6, 40895–40899 (2016)

    CAS  Google Scholar 

  19. N. Yamada, K. Maruya, Y. Yamaguchi, X. Cao, Y. Ninomiya, p-to n-type conversion and nonmetal-metal transition of lithium-inserted Cu3N films. Chem. Mater. 27, 8076–8083 (2015)

    CAS  Google Scholar 

  20. K. Matsuzaki, T. Okazaki, Y.-S. Lee, H. Hosono, T. Susaki, Controlled bipolar doping in Cu3N (100) thin films. Appl. Phys. Lett. 105, 222102 (2014)

    Google Scholar 

  21. A.N. Fioretti, C.P. Schwartz, J. Vinson, D. Nordlund, D. Prendergast, A.C. Tamboli, C.M. Caskey, F. Tuomisto, F. Linez, S.T. Christensen, Understanding and control of bipolar self-doping in copper nitride. J. Appl. Phys. 119, 181508 (2016)

    Google Scholar 

  22. X.Y. Cui, A. Soon, A.E. Phillips, R.K. Zheng, Z.W. Liu, B. Delley, S.P. Ringer, C. Stampfl, First principles study of 3d transition metal doped Cu3N. J. Magn. Magn. Mater. 324, 3138–3143 (2012)

    CAS  Google Scholar 

  23. H. Chen, J. Zhao, Z. Wu, T. Yang, Y. Ma, W. Huang, K. Yao, First principles study of anti-ReO3 type Cu3N and Sc-doped Cu3N on structural, elastic and electronic properties. Comput. Theor. Chem. 1018, 71–76 (2013)

    CAS  Google Scholar 

  24. M.G. Moreno-Armenta, A. Martınez-Ruiz, N. Takeuchi, Ab initio total energy calculations of copper nitride: the effect of lattice parameters and Cu content in the electronic properties. Solid State Sci. 6, 9–14 (2004)

    CAS  Google Scholar 

  25. A.L. Ji, N.P. Lu, L. Gao, W.B. Zhang, L.G. Liao, Z.X. Cao, Electrical properties and thermal stability of Pd-doped copper nitride films. J. Appl. Phys. 113, 043705 (2013)

    Google Scholar 

  26. L. Gao, A.L. Ji, W.B. Zhang, Z.X. Cao, Insertion of Zn atoms into Cu3N lattice: structural distortion and modification of electronic properties. J. Cryst. Growth 321, 157–161 (2011)

    CAS  Google Scholar 

  27. A. Ji, D. Yun, L. Gao, Z. Cao, Crystalline thin films of stoichiometric Cu3N and intercalated Cu3NMx (M = metals): growth and physical properties. Phys. Status Solidi A 207, 2769–2780 (2010)

    CAS  Google Scholar 

  28. X. Fan, Z. Wu, H. Li, B. Geng, C. Li, P. Yan, Morphology and thermal stability of Ti-doped copper nitride films. J. Phys. Appl. Phys. 40, 3430 (2007)

    CAS  Google Scholar 

  29. K.J. Kim, J.H. Kim, J.H. Kang, Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. J. Cryst. Growth 222, 767–772 (2001)

    Google Scholar 

  30. S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, P. Shah, A. Gupta, Effect of substrate temperature on the physical properties of copper nitride films by rf reactive sputtering. Surf. Coat. Technol. 142, 1034–1039 (2001)

    Google Scholar 

  31. X.M. Yuan, P.X. Yan, J.Z. Liu, Preparation and characterization of copper nitride films at various nitrogen contents by reactive radio-frequency magnetron sputtering. Mater. Lett. 60, 1809–1812 (2006)

    CAS  Google Scholar 

  32. J.F. Pierson, Structure and properties of copper nitride films formed by reactive magnetron sputtering. Vacuum 66, 59–64 (2002)

    CAS  Google Scholar 

  33. F. Han, W.-C. Li, D. Li, A.-H. Lu, In situ electrochemical generation of mesostructured Cu2S/C composite for enhanced lithium storage: mechanism and material properties. ChemElectroChem. 1, 733–740 (2014)

    CAS  Google Scholar 

  34. S.C. Wu, C.S. Tan, M.H. Huang, Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O–ZnO heterostructures. Adv. Funct. Mater. 27, 1604635 (2017)

    Google Scholar 

  35. S.R. Kappaganthu, Y. Sun, Studies of structure and morphology of sputter-deposited stainless steel–nitrogen films. Appl. Phys. Mater. Sci. Process. 81, 737–744 (2005)

    CAS  Google Scholar 

  36. T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering. Thin Solid Films 348, 8–13 (1999)

    CAS  Google Scholar 

  37. Q.X. Guo, M. Yoshitugu, T. Tanaka, M. Nishio, H. Ogawa, Microscopic investigations of aluminum nitride thin films grown by low-temperature reactive sputtering. Thin Solid Films 483, 16–20 (2005)

    CAS  Google Scholar 

  38. A.M. Reddy, A.S. Reddy, P.S. Reddy, Thickness dependent properties of nickel oxide thin films deposited by dc reactive magnetron sputtering. Vacuum 85, 949–954 (2011)

    Google Scholar 

  39. H. Cheng, Y. Sun, P. Hing, The influence of deposition conditions on structure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering. Thin Solid Films 434, 112–120 (2003)

    CAS  Google Scholar 

  40. G.H. Yue, P.X. Yan, J.Z. Liu, M.X. Wang, M. Li, X.M. Yuan, Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering. J. Appl. Phys. 98, 103506 (2005)

    Google Scholar 

  41. A.L. Ji, R. Huang, Y. Du, C.R. Li, Y.Q. Wang, Z.X. Cao, Growth of stoichiometric Cu3N thin films by reactive magnetron sputtering. J. Cryst. Growth 295, 79–83 (2006)

    CAS  Google Scholar 

  42. A. Lotfi-Kaljahi, H. Savaloni, Investigation on the production of copper nitride (copper azide) thin films and their nanostructures. J. Theor. Appl. Phys. 7, 2 (2013)

    Google Scholar 

  43. G. Sahoo, S.R. Meher, M.K. Jain, Room temperature growth of high crystalline quality Cu3N thin films by modified activated reactive evaporation. Mater. Sci. Eng., B 191, 7–14 (2015)

    CAS  Google Scholar 

  44. D.L. Wood, J.S. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B. 5, 3144 (1972)

    Google Scholar 

  45. N. Gordillo, R. Gonzalez-Arrabal, M.S. Martin-Gonzalez, J. Olivares, A. Rivera, F. Briones, F. Agulló-López, D.O. Boerma, DC triode sputtering deposition and characterization of N-rich copper nitride thin films: role of chemical composition. J. Cryst. Growth 310, 4362–4367 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by GRI (GIST Research Institute) project through a grant provided by GIST. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1005590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, H., An, H., Lee, J. et al. Large enhancement of the photocurrent density in N-doped Cu3N films through bandgap reduction. J. Korean Ceram. Soc. 57, 345–351 (2020). https://doi.org/10.1007/s43207-020-00033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00033-0

Keywords

Navigation