Skip to main content

Compressive strength enhancement of artificial bone using hydroxyapatite/fish-collagen nanocomposite

Abstract

Marine collagen was used to prepare an artificial bone composite based on calcium phosphate nanocrystallites such as hydroxyapatite (HAp). The mechanical strength of calcium phosphate bone blocks is much lower than that of real bones. Hence, their strength needs to be enhanced for application of a human body. As-received freeze-dried fish collagen (fish COL) was dissolved in an acetic acid aqueous solution and then mixed with an aqueous H3PO4 solution. HAp crystallites were precipitated in the matrix of the fish-COL solution. The precipitated HAp/COL nanocomposite slurries were vacuum-filtered using a glass filter to prepare specimens for measuring compressive strength. Obtaining uniform density in the HAp/COL sample block was a challenge in this study. With a change in the COL content in the precipitated HAp/COL nanocomposite, the compressive strength was estimated using a universal testing machine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. R.A. Young, Biological apatite vs. hydroxyapatite at the atomic level. Clin. Orthop. Relat. Res. 113, 249–260 (1975)

    CAS  Article  Google Scholar 

  2. Brown WE, Chow LC (1986) A new calcium phosphate water-setting cement. In: Brown PW (ed) Cement research progress. The American Ceramic Society, Ohio, pp 351–379

  3. L.C. Chow, Development of self-setting calcium phosphate cements. J. Cer. Soc. Jpn. 99(1154), 954–964 (1991)

    CAS  Article  Google Scholar 

  4. M.C. Chang, Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a cross-linkage agent. J. Mater. Sci. Lett. 20(4), 1199–1201 (2001)

    CAS  Article  Google Scholar 

  5. I. Palmer, J. Nelson, W. Schatton, N.J. Dunne, F. Buchanan, S.A. Clarke, Biocompatibility of calcium phosphate bone cement with optimized mechanical properties: an in vivo study. J. Mater. Sci: Mater. Med. 27(12), 191 (2016)

    Google Scholar 

  6. D.W. Green, Bone and Joint Research Group, Tissue bionics: examples in biomimetic tissue engineering. Biomed. Mater. 3(3), 034010 (2008)

    Article  Google Scholar 

  7. E. Mm Van Lieshout, G.H. Van Kralingen, Y. El-Massoudi, H. Weinans, P. Patka, Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet. Disord. 12(34), 1–14 (2011)

    Google Scholar 

  8. A. Ogose, N. Kondo, H. Umezu, T. Hotta, H. Kawashima, K. Tokunaga, T. Ito, N. Kudo, M. Hoshino, W. Gu, N. Endo, Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion®) in human bones. Biomaterials 27(8), 1542–1549 (2006)

    CAS  Article  Google Scholar 

  9. S. Sotome, K. Ae, A. Okawa, M. Ishizuki, H. Morioka, S. Matsumoto, T. Nakamura, S. Abe, Y. Beppu, K. Shinomiya, Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: a randomized controlled study. J. Orthop. Sci. 21(3), 373–380 (2016)

    Article  Google Scholar 

  10. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, S. Mann, Physical Properties of Type I Collagen Extracted from Fish Scales of Pagrus major and Oreochromis niloticas. Int J Biol Macromol 32(5), 199–204 (2003)

    CAS  Article  Google Scholar 

  11. M. Okuda, M. Takeguchi, M. Tagaya, T. Tonegawa, A. Hashimoto, N. Hanagata, T. Ikoma, Elemental distribution analysis of type i collagen fibrils in tilapia fish scale with energy-filtered TEM. Micron 40(6), 665–668 (2009)

    CAS  Article  Google Scholar 

  12. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, S. Mann, Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142(3), 327–333 (2003)

    Article  Google Scholar 

  13. S. Chen, N. Hirota, M. Okuda, M. Takeguchi, H. Kobayashi, N. Hanagata, T. Ikoma, Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. Acta Biomater. 7(2), 644–652 (2011)

    CAS  Article  Google Scholar 

  14. M.C. Chang, Use of wet chemical method to prepare β tri-calcium phosphates having macro- and nano-crystallites for artificial bone. J. Korean Ceram. Soc. 53(6), 670–675 (2016)

    CAS  Article  Google Scholar 

  15. M.C. Chang, The influence of nano-TCP Powders in the β-TCP—based artificial bone synthesis. Biomater. Res. 17(3), 121–125 (2013)

    Google Scholar 

  16. M.C. Chang, Precipitation of calcium phosphate at pH 50 for the β tri-calcium phosphate cement. J. Korean Ceram. Soc. 50(4), 275–279 (2013)

    CAS  Article  Google Scholar 

  17. M.C. Chang, R. DeLong, Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions. Dent. Mater. 25(2), 261–268 (2009)

    CAS  Article  Google Scholar 

  18. T. Sato, A. Kochi, Y. Shirosaki, S. Hayakawa, M. Aizawa, A. Osaka, M. Kikuchi, Preparation of injectable hydroxyapatite/collagen paste using sodium alginate and influence of additives. J. Ceram. Soc. Jpn. 121(9), 775–781 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the general research support program of the National Research Foundation (NRF) and the Korea Institute of Marine Science & Technology (KIMST), funded by the Korean Government (No. 10B10415111 and No. 17A17533751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Chul Chang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, M., Kim, BG. & Whang, JH. Compressive strength enhancement of artificial bone using hydroxyapatite/fish-collagen nanocomposite. J. Korean Ceram. Soc. 57, 321–330 (2020). https://doi.org/10.1007/s43207-020-00026-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00026-z

Keywords

  • Mechanical property
  • Organic precursor
  • Apatite
  • Biomedical applications
  • Composites