Skip to main content

Materials and nano-structural processes for use in solid oxide fuel cells: a review

Abstract

Solid oxide fuel cells (SOFCs) are considered to be the focus of investigation for energy systems owing to their efficiency in converting chemical energy into electrical energy, low carbon footprint, and fuel flexibility. Despite their high performance and durability, SOFCs suffer from critical problems such as carbon coking, agglomeration, and poor redox stability. This review presents research on the development of nanostructures for use in commercial SOFC systems and highlights various aspects of research and applications across the globe. The materials utilized for anodes, electrolytes, and cathodes are discussed and compared, detailing how their respective properties can attain high catalytic activity, conductivity, and stability at low temperatures with the aim of direct application using diverse fuels such as hydrogen, hydrocarbons, and carbon fuels. This review also discusses and compares the various processes used for the synthesis of the electrodes and electrolytes used in SOFCs, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), infiltration, and in situ exsolution, that have gained much attention with a view to increase the active areas, decrease the Ohmic resistance, and reduce the manufacturing price.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted with permission from ref. [97]. Copyright 2016, The Electrochemical Society

Fig. 6

Reprinted with permission from [89]. Copyright 2016 Elsevier

Fig. 7
Fig. 8

Reprinted with permission from [134]. Copyright 2019 Elsevier

Fig. 9

Reprinted with permission from [108]. Copyright 2003 Elsevier

Fig. 10

Reprinted with permission from [106]. Copyright 2006 Elsevier

Fig. 11

Reprinted with permission from [114]. Copyright 2012 Elsevier

Fig. 12
Fig. 13

Reprinted with permission from [120]. Copyright 2017 Elsevier

Fig. 14

Reprinted with permission from [120]. Copyright 2017 Elsevier

Fig. 15
Fig. 16

Reprinted with permission from ref. [131]. Copyright 2015, Nature Publication Group

Fig. 17

Reprinted with permission from [129]. Copyright 2018 Elsevier

References

  1. 1.

    H. Benveniste, O. Boucher, C. Guivarch, H. Le-Treut, P. Criqui, Impacts of nationally determined contributions on 2030 global greenhouse gas emissions. Environ. Res. Lett. 13(1), 014022 (2010)

    Google Scholar 

  2. 2.

    Y. Chung, C. Paik, Y.J. Kim, Assessment of mitigation pathways of GHG emissions from the Korean waste sector through 2050. Sustain. Environ. Res. 28(3), 135–141 (2018)

    CAS  Google Scholar 

  3. 3.

    A. Hussain, S.M. Arif, M. Aslam, Emerging renewable and sustainable energy technologies: state of the art. Renew. Sustain. Energy Rev. 71, 12–28 (2017)

    Google Scholar 

  4. 4.

    N. Kannan, D. Vakeesan, Solar energy for future world: a review. Renew. Sustain. Energy Rev. 62, 1092–1105 (2016)

    Google Scholar 

  5. 5.

    F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafafila-Robles, A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012)

    Google Scholar 

  6. 6.

    D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)

    CAS  Google Scholar 

  7. 7.

    S.M. Lu, A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 81, 2902–2921 (2018)

    Google Scholar 

  8. 8.

    M.J. Khan, G. Bhuyan, M.T. Iqbal, J.E. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Appl. Energy 86(10), 1823–1835 (2009)

    Google Scholar 

  9. 9.

    A.F.D.O. Falcão, Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 14(3), 899–918 (2010)

    Google Scholar 

  10. 10.

    S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294 (2012)

    CAS  Google Scholar 

  11. 11.

    N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in materials science progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater Sci. 72, 141–337 (2015)

    CAS  Google Scholar 

  12. 12.

    M.Z. Jacobson, Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308(5730), 1901–1905 (2005)

    CAS  Google Scholar 

  13. 13.

    B.K. Hong, S.H. Kim, Recent advances in fuel cell electric vehicle technologies of hyundai. ECS Trans. 86(13), 3–11 (2018)

    CAS  Google Scholar 

  14. 14.

    D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, L.J. Gauckler, Thin films for micro solid oxide fuel cells. J. Power Sources 173(1), 325–345 (2007)

    CAS  Google Scholar 

  15. 15.

    A. Kirubakaran, S. Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)

    CAS  Google Scholar 

  16. 16.

    A.B. Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6(3), 295–304 (2002)

    Google Scholar 

  17. 17.

    A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002)

    CAS  Google Scholar 

  18. 18.

    Z.M. Huang, A. Su, Y.C. Liu, Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications. Energy 51, 230–236 (2013)

    CAS  Google Scholar 

  19. 19.

    J. Fernández-Moreno, G. Guelbenzu, A.J. Martín, M.A. Folgado, P. Ferreira-Aparicio, A.M. Chaparro, A portable system powered with hydrogen and one single air-breathing PEM fuel cell. Appl. Energy 109, 60–66 (2013)

    Google Scholar 

  20. 20.

    B.G. Pollet, I. Staffell, J. Lei, Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Elercrochim. Acta 84, 235–249 (2012)

    CAS  Google Scholar 

  21. 21.

    A. Evans, A. Bieberle-Hütter, J.L.M. Rupp, L.J. Gauckler, Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194(1), 119–129 (2009)

    CAS  Google Scholar 

  22. 22.

    R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H. Majlan, M.A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 42(14), 9293–9314 (2017)

    CAS  Google Scholar 

  23. 23.

    T. Elmer, M. Worall, S. Wu, S.B. Riffat, Fuel cell technology for domestic built environment applications: state of-the-art review. Renew. Sustain. Energy Rev. 42, 913–931 (2015)

    Google Scholar 

  24. 24.

    Y.J. Kim, H.M. Lee, H. Lim, Degradation comparison of hydrogen and internally reformed methane-fueled solid oxide fuel cells. J. Korean Ceram. Soc. 53(5), 483–488 (2016)

    CAS  Google Scholar 

  25. 25.

    J. Staniforth, R.M. Ormerod, Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell. Catal. Lett. 81(1-2), 19–23 (2002)

    CAS  Google Scholar 

  26. 26.

    S. Farhad, F. Hamdullahpur, Y. Yoo, Performance evaluation of different configurations of biogas-fuelled SOFC micro-CHP systems for residential applications. Int. J. Hydrogen Energy 35(8), 3758–3768 (2010)

    CAS  Google Scholar 

  27. 27.

    P.E. Dodds, I. Staffell, A.D. Hawkes, F. Li, P. Grünewald, W. McDowall, P. Ekins, Hydrogen and fuel cell technologies for heating: a review. Int. J. Hydrogen Energy 40(5), 2065–2083 (2015)

    CAS  Google Scholar 

  28. 28.

    J.H. Park, S.M. Han, K.J. Yoon, H.C. Kim, J.S. Hong, B.K. Kim, J.H. Lee, J.W. Son, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 315, 324–330 (2016)

    CAS  Google Scholar 

  29. 29.

    P. Kofstad, R. Bredesen, High temperature corrosion in SOFC environments. Solid State Ionics 52(1-3), 69–75 (1992)

    CAS  Google Scholar 

  30. 30.

    Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C. Adv. Maters 29(48), 1700132 (2017)

    Google Scholar 

  31. 31.

    S. Hong, J. Bae, B. Koo, Y.B. Kim, High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure. Electrochem. Commun. 47, 1–4 (2014)

    CAS  Google Scholar 

  32. 32.

    C. Peters, A. Weber, B. Butz, D. Gerthsen, E. Ivers-Tiffée, Grain-size effects in YSZ thin-film electrolytes. J. Am. Ceram. Soc. 92(9), 2017–2024 (2009)

    CAS  Google Scholar 

  33. 33.

    E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    CAS  Google Scholar 

  34. 34.

    Young, G. Young, Y. Ho, S. Wook, J. Bae, ScienceDirect High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia (ScSZ) thin film electrolyte. Int. J. Hydrogen Energy 40(45), 15704–15708 (2015)

    Google Scholar 

  35. 35.

    V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174(1-4), 135–149 (2004)

    CAS  Google Scholar 

  36. 36.

    S. Zha, W. Rauch, M. Liu, Ni–Ce0. 9Gd0. 1O1. 95 anode for GDC electrolyte-based low-temperature SOFCs. Solid State Ionics 166(3-4), 241–250 (2004)

    CAS  Google Scholar 

  37. 37.

    A. Arabac, M. Faruk, Preparation and characterization of 10 mol % Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram. Int. 38(8), 6509–6515 (2012)

    Google Scholar 

  38. 38.

    C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid Stare Electrochem. 14(7), 1125–1144 (2010)

    CAS  Google Scholar 

  39. 39.

    M. Mogensen, K.V. Jensen, M.J. Jorgensen, S. Primdahl, Progress in understanding SOFC electrodes. Solid State Ionics 150(1-2), 123–129 (2002)

    CAS  Google Scholar 

  40. 40.

    Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, P.V. Hendriksen, Microstructural studies on degradation of interface between LSM and YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180(23-25), 1298–1304 (2009)

    CAS  Google Scholar 

  41. 41.

    T. Tsai, S.A. Barn, Effect of LSM–YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93(3-4), 207–217 (1997)

    CAS  Google Scholar 

  42. 42.

    V. Dusastre, J.A. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126(1-2), 163–174 (1999)

    CAS  Google Scholar 

  43. 43.

    V.A.C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold, F. Tietz, Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. J. Power Sources 141(2), 216–226 (2005)

    CAS  Google Scholar 

  44. 44.

    A. Bertei, B. Nucci, C. Nicolella, Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem. Eng. Sci. 101, 175–190 (2013)

    CAS  Google Scholar 

  45. 45.

    W.H. Kim, H.S. Song, J. Moon, H.W. Lee, Intermediate temperature solid oxide fuel cell using (La, Sr)(Co, Fe)O 3 -based cathodes. Solid State Ionics 177(35-36), 3211–3216 (2006)

    CAS  Google Scholar 

  46. 46.

    S.P.S. Shaikh, A. Muchtar, M.R. Somalu, A review on the selection of anode materials for solid-oxide fuel cells. Renew. Sustain. Energy Rev. 51, 1–8 (2015)

    CAS  Google Scholar 

  47. 47.

    B. Shri-Prakash, S. Senthil-Kumar, S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renew. Sustain. Energy Rev. 36, 149–179 (2014)

    CAS  Google Scholar 

  48. 48.

    H. Koide, Properties of Ni/YSZ cermet as anode for SOFC. Solid State Ionics 132(3-4), 253–260 (2000)

    CAS  Google Scholar 

  49. 49.

    W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362(1-2), 228–239 (2003)

    Google Scholar 

  50. 50.

    D. Papurello, A. Lanzini, S. Fiorilli et al., Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): deactivation in single cells and a stack. Chem. Eng. J 283, 1224–1233 (2016)

    CAS  Google Scholar 

  51. 51.

    H. Seong, H. Mi, J. Park, H.T. Lim, ScienceDirect Degradation behavior of Ni–YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration. Int. J. Hydrogen Energy 43(49), 22511–22518 (2018)

    Google Scholar 

  52. 52.

    J. Koh, Y. Yoo, J. Park, H.C. Lim, Carbon deposition and cell performance of Ni–YSZ anode support SOFC with methane fuel. Solid State Ionics 149(3-4), 157–166 (2002)

    CAS  Google Scholar 

  53. 53.

    F.S. da Silva, T.M. de Souza, Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrogen Energy 42(41), 26020–26036 (2017)

    Google Scholar 

  54. 54.

    M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application. J. Power Sources 168(2), 289–298 (2007)

    CAS  Google Scholar 

  55. 55.

    B.X.J. Chen, Q.L. Liu, S.H. Chan, N.P. Brandon, K.A. Khor, High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane. Fuel Cells Bull. 2007(6), 12–16 (2007)

    Google Scholar 

  56. 56.

    D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, Science Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog. Mater Sci. 75, 38–79 (2016)

    CAS  Google Scholar 

  57. 57.

    T. Yu, X. Mao, G. Ma, Performance of cobalt-free perovskite La0.6Sr 0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC. J. Alloys Compd. 608, 30–34 (2014)

    CAS  Google Scholar 

  58. 58.

    A. VahidMohammadi, Z. Cheng, Fundamentals of synthesis, sintering issues, and chemical stability of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3−δ proton conducting electrolyte for SOFCs. J. Electrochem. Soc. 162(8), F803–F811 (2015)

    CAS  Google Scholar 

  59. 59.

    L. Bi, E.H. Daas, S.P. Shafi, Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem. Commun. 80, 20–23 (2017)

    CAS  Google Scholar 

  60. 60.

    H. An, D. Shin, H. Ji, Effect of nickel addition on sintering behavior and electrical conductivity of BaCe0. 35Zr0. 5Y0. 15O3-δ. J. Korean Ceram. Soc. 56(1), 91–97 (2018)

    Google Scholar 

  61. 61.

    Y.-H. Huang, R.I. Dass, Z.-L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312(5771), 254–257 (2006)

    CAS  Google Scholar 

  62. 62.

    V. Cascos, L. Troncoso, J.A. Alonso, M.T. Fernándex-Díaz, Design of new Ga-doped SrMoO3 perovskites performing as anode materials in SOFC. Renew. Energy 111, 476–483 (2017)

    CAS  Google Scholar 

  63. 63.

    S. Sydyknazar, V. Cascos, M.T. Fernández-Díaz, J.A. Alonso, Design, synthesis and performance of Ba-doped derivatives of SrMo0.9Fe0.1O3-δ perovskite as anode materials in SOFCs. J. Materiomics 5(2), 280–285 (2019)

    Google Scholar 

  64. 64.

    F. Zhao, X. Wang, Z. Wang, R. Peng, C. Xia, K2NiF4 type La2-xSrxCo0. 8Ni0. 2O4+δ as the cathodes for solid oxide fuel cells. Solid State Ionics 179(27-32), 1450–1453 (2008)

    CAS  Google Scholar 

  65. 65.

    Q. Li, H. Zhao, L. Huo, L. Jun, X. Cheng, J.C. Grenier, Electrode properties of Sr doped La2 CuO4 as new cathode material for intermediate-temperature SOFCs. Electrochem. Commun. 9(7), 1508–1512 (2007)

    CAS  Google Scholar 

  66. 66.

    G. Yang, C. Su, R. Ran, M.O. Tade, Z. Shao, Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4 -type La2NiO4 electrode. Energy Fuels 28(1), 356–362 (2013)

    Google Scholar 

  67. 67.

    H. An, D. Shin, H. Ji, Pr2NiO4+δ, for cathode in protonic ceramic fuel cells. J. Korean Ceram. Soc 55(4), 358–363 (2018)

    CAS  Google Scholar 

  68. 68.

    Y. Zhang, Y. Gao, G. Meng, X. Liu, Production of dense yttria-stabilized zirconia thin film by dip-coating for IT-SOFC application. J. Appl. Electrochem. 34(6), 637–641 (2004)

    CAS  Google Scholar 

  69. 69.

    Y. Zhang, J. Gao, D. Peng, M. Guangyao, X. Liu, Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications. Ceram. Int. 30(6), 1049–1053 (2004)

    CAS  Google Scholar 

  70. 70.

    Z. Wang, K. Sun, S. Shen, X. Zhou, J. Qiao, N. Zhang, Effect of co-sintering temperature on the performance of SOFC with YSZ electrolyte thin films fabricated by dip-coating method. J. Solid State Electrochem. 14(4), 637–642 (2010)

    CAS  Google Scholar 

  71. 71.

    F.J. Dias, A. Naoumidis, D. Sto, D. Simwonis, H. Thu, Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix 1 process. J. Mater. Process. Technol. 92, 107–111 (1999)

    Google Scholar 

  72. 72.

    H. Moon, S.D. Kim, S.H. Hyun, H.S. Kim, Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int. J. Hydrogen Energy 33(6), 1758–1768 (2008)

    CAS  Google Scholar 

  73. 73.

    J.S. Ahn, H. Yoon, K.T. Lee, M.A. Camaratta, E.D. Wachsman, Performance of IT‐SOFC with Ce0.9Gd0.1O1.95 Functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni–Ce0.9Gd0.1O1.95 Anode. Fuel Cells 9(5), 639–643 (2009)

    Google Scholar 

  74. 74.

    Z. Cai, T.N. Lan, S. Wang, M. Dokiya, Supported Zr(Sc) O2 SOFCs for reduced temperature prepared by slurry coating and co-firing. Solid State Ionics 152, 583–590 (2002)

    Google Scholar 

  75. 75.

    C. Xia, F. Chen, M. Liu, Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4(5), A52–A54 (2001)

    CAS  Google Scholar 

  76. 76.

    P. Ried, C. Lorenz, A. Brönstrup, T. Graule, M.H. Menzler, W. Sitte, P. Holtappels, Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC. J. Eur. Ceram. Soc. 28(9), 1801–1808 (2008)

    CAS  Google Scholar 

  77. 77.

    J. Ahn, H.W. Jang, H. Ji, H. Kim, K.J. Yoon, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Identification of an actual strain induced effect on fast ion conduction in a thin-film electrolyte. Nano Lett. 18(5), 2794–2801 (2018)

    CAS  Google Scholar 

  78. 78.

    H.J. Avila-paredes, K. Choi, C. Chen, S. Kim, Dopant-concentration dependence of grain-boundary conductivity in ceria: a space-charge analysis. J. Mater. Chem. 19(27), 4837–4842 (2009)

    CAS  Google Scholar 

  79. 79.

    J. Hyung, J. Sun, T.P. Holme, K. Crabb, W. Lee, Y. Beom, X. Tian, T.M. Gu, F.B. Prinz, Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Mater. 60(1), 1–7 (2012)

    Google Scholar 

  80. 80.

    M.V.F. Schlupp, B. Scherrer, H. Ma, J.G. Grolig, J. Martynczuk, M. Prestat, L.J. Gauckler, Influence of microstructure on the cross-plane oxygen ion conductivity of yttria stabilized zirconia thin films advanced materials physics. Phys. Status Solidi A 209(8), 1414–1422 (2012)

    CAS  Google Scholar 

  81. 81.

    G.M. Christie, F.P.F. van Berkel, Microstructure—ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics 83(1-2), 17–27 (1996)

    CAS  Google Scholar 

  82. 82.

    M. Han, X. Tang, H. Yin, S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165(2), 757–763 (2007)

    CAS  Google Scholar 

  83. 83.

    J. Will, A. Mitterdorfer, C. Kleinlogel, K. Perednis, L.J. Gauckler, Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131(1-2), 79–96 (2000)

    CAS  Google Scholar 

  84. 84.

    M. Tanhaei, M. Mozammel, Yttria-stabilized zirconia thin film electrolyte deposited by EB-PVD on porous anode support for SOFC applications. Ceram. Int. 43(3), 3035–3042 (2017)

    CAS  Google Scholar 

  85. 85.

    D. Virbukas, M. Sriubas, G. Laukaitis, Structural and electrical study of samarium doped cerium oxide thin films prepared by e-beam evaporation. Solid State Ionics 509(13), 4525–4529 (2011)

    Google Scholar 

  86. 86.

    Y.S. Hong, S.H. Kim, W.J. Kim, H.H. Yoon, Fabrication and characterization GDC electrolyte thin fi lms by e-beam technique for IT-SOFC. Curr. Appl. Phys. 11(5), S163–S168 (2011)

    Google Scholar 

  87. 87.

    G. Laukaitis, J. Dudonis, D. Milcius, YSZ thin films deposited by e-beam technique. Thin Solid Films 515(2), 678–682 (2006)

    CAS  Google Scholar 

  88. 88.

    D. Virbukas, G. Laukaitis, The structural and electrical properties of samarium doped ceria films formed by e-beam deposition technique. Solid State Ionics 302, 107–112 (2017)

    CAS  Google Scholar 

  89. 89.

    S. Hong, D. Lee, Y. Lim, J. Bae, Y.B. Kim, Yttria-stabilized zirconia thin films with restrained columnar grains for oxygen ion conducting electrolytes. Ceram. Int. 42(15), 16703–16709 (2016)

    CAS  Google Scholar 

  90. 90.

    L.S. Wang, S.A. Barnett, Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes. Solid State Ionics 61(4), 273–276 (1993)

    CAS  Google Scholar 

  91. 91.

    E. Rezugina, A.L. Thomann, H. Hidalgo, P. Brault, V. Dolique, Y. Tessier, Ni–YSZ films deposited by reactive magnetron sputtering for SOFC applications. Surf. Coat. Technol. 204(15), 2376–2380 (2010)

    CAS  Google Scholar 

  92. 92.

    K. Hayashi, Sputtered La0.5Sr0.5MnO3–yttria stabilized zirconia composite film electrodes for SOFC. Solid State Ionics 98(1-2), 49–55 (1997)

    CAS  Google Scholar 

  93. 93.

    Y.L. Kuo, Y.S. Chen, C. Lee, Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering: the O2/Ar flow ratio effect. J. Eur. Ceram. Soc. 31(16), 3127–3135 (2011)

    CAS  Google Scholar 

  94. 94.

    A. Nagata, H. Okayama, Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering. Vacuum 66(3-4), 523–529 (2002)

    CAS  Google Scholar 

  95. 95.

    K. Sasaki, M. Muranaka, A. Suzuki, T. Terai, Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS. Solid State Ionics 179(21–26), 1268–1272 (2008)

    CAS  Google Scholar 

  96. 96.

    M.M. Vieira, J.C. Oliveira, A.L. Shaula, A. Cavaleiro, B. Trindade, Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing. Sruf. Coat. Technol. 206(14), 3316–3322 (2012)

    CAS  Google Scholar 

  97. 97.

    H.-S. Noh, J. Hong, H. Kim, K.J. Yoon, B.K. Kim, H.W. Lee, J.H. Lee, J.W. Son, Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology. J. Electrochem. Soc. 163(7), F613–F617 (2016)

    CAS  Google Scholar 

  98. 98.

    T. Ryll, H. Galinski, L. Schlagenhauf, P. Elser, J.L. Rupp, A. Bieberle-Hutter, L.J. Gauckler, Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv. Funct. Mater. 21(3), 565–572 (2011)

    CAS  Google Scholar 

  99. 99.

    G.Y. Cho, Y.H. Lee, S.W. Cha, Multi-component nano-composite electrode for SOFCS via thin film technique. Renew. Energy 65, 130–136 (2014)

    CAS  Google Scholar 

  100. 100.

    H.M. Ansari, M.D. Rauscher, S.A. Dregia, S.A. Akbar, Epitaxial pore-free gadolinia-doped ceria thin films on yttria-stabilized zirconia by RF magnetron sputtering. Ceram. Int. 39(8), 9749–9752 (2013)

    CAS  Google Scholar 

  101. 101.

    A.A. Solovyev, S.V. Rabotkin, A.V. Shipilova, I.V. Ionov, Magnetron sputtering of gadolinium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Int. J. Electrochem. 14, 575–584 (2019)

    CAS  Google Scholar 

  102. 102.

    J.H. Joo, G.M. Choi, Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics 177(11-12), 1053–1057 (2006)

    CAS  Google Scholar 

  103. 103.

    E. Koep, C. Jin, M. Haluska, R. Das, R. Narayan, K. Sandhage, M. Liu, Microstructure and electrochemical properties of cathode materials for SOFCs prepared via pulsed laser deposition. J. Power Sources 161(1), 250–255 (2006)

    CAS  Google Scholar 

  104. 104.

    H.S. Noh, J.W. Son, H. Lee, H.S. Song, H.W. Lee, J.H. Lee, Low temperature performance improvement of SOFC with thin film electrolyte and electrodes fabricated by pulsed laser deposition”. J. Electrochem. Soc. 156(12), B1484–B1490 (2009)

    CAS  Google Scholar 

  105. 105.

    J.H. Joo, G.M. Choi, Electrical conductivity of thin film ceria grown by pulsed laser deposition. J. Eur. Ceram. Soc. 27(13-15), 4227–4273 (2007)

    Google Scholar 

  106. 106.

    T. Takeyama, N. Takahashi, T. Nakamura, S. Itoh, δ-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications. Surf. Coat. Technol. 200(16-17), 4797–4801 (2006)

    CAS  Google Scholar 

  107. 107.

    M.V.F. Schlupp, A. Kurlov, J. Hwang, Z. Yáng, M. Döbeli, J. Martynczuk, L.J. Gauckler, Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells. Fuel Cells 13(5), 658–665 (2013)

    CAS  Google Scholar 

  108. 108.

    K.L. Choy, Chemical vapour deposition of coating. Prog. Mater Sci. 48(2), 57–170 (2003)

    CAS  Google Scholar 

  109. 109.

    G. Meng, H. Song, Q. Dong, D. Peng, Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films. Solid State Ionics 175(1-4), 29–34 (2004)

    CAS  Google Scholar 

  110. 110.

    S. Krumdieck, A. Kristinsdottir, L. Ramirez, M. Lebedev, N. Long, Growth rate, microstructure and conformality as a function of vapor exposure for zirconia thin films by pulsed-pressure MOCVD. Surf. Coat. Technol. 201(22-23), 8908–8913 (2007)

    CAS  Google Scholar 

  111. 111.

    M. Suzuki, High performance solid oxide fuel cell cathode fabricated by electrochemical vapor deposition. J. Electrochem. Soc. 141(7), 1928–1931 (1994)

    CAS  Google Scholar 

  112. 112.

    A. Mineshige, K. Fukushima, K. Tsukada, M. Kobune, T. Yazawa, K. Kikuchi, Z. Ohumi, Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid State Ionics 175(1-4), 483–485 (2004)

    CAS  Google Scholar 

  113. 113.

    H.Z. Song, H.B. Wang, S.W. Zha, D.K. Peng, G.Y. Meng, Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate. Solid State Ionics 156(3-4), 249–254 (2003)

    CAS  Google Scholar 

  114. 114.

    M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J. Power Sources 202, 47–55 (2012)

    CAS  Google Scholar 

  115. 115.

    Y. Liu, C. Compson, M. Liu, Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 138(1-2), 194–198 (2004)

    CAS  Google Scholar 

  116. 116.

    J.W. Kim, D.Y. Jang, M. Kim, H.J. Choi, J.H. Shim, Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. J. Power Sources 301, 72–77 (2016)

    CAS  Google Scholar 

  117. 117.

    M.V.F. Schlupp, A. Evans, J. Martynczuk, M. Prestat, Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition. Adv. Energy Mater. 4(5), 1301383 (2014)

    Google Scholar 

  118. 118.

    J. Lu, J.W. Elam, P.C. Stair, Atomic layer deposition - Sequential self-limiting surface reactions for advanced catalyst ‘bottom-up’ synthesis. Surf. Sci. Rep. 71(2), 410–472 (2016)

    CAS  Google Scholar 

  119. 119.

    J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21(9), 943–956 (2009)

    CAS  Google Scholar 

  120. 120.

    K.J. Yoon, M. Biswas, H.J. Kim, M. Park, J. Hong, H. Kim, H.W. Lee, Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells. Nano Energy 36, 9–20 (2017)

    CAS  Google Scholar 

  121. 121.

    W. Li, Z. Lü, X. Zhu et al., Effect of adding urea on performance of Cu/CeO2/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method. Electrochim. Acta 56(5), 2230–2236 (2011)

    CAS  Google Scholar 

  122. 122.

    D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7(2), 552–575 (2014)

    CAS  Google Scholar 

  123. 123.

    T.Z. Sholklapper, V. Radmilovic, C.P. Jacobson et al., Nanocomposite Ag-LSM solid oxide fuel cell electrodes. J. Power Sources 175(1), 206–210 (2008)

    CAS  Google Scholar 

  124. 124.

    E. Dogdibegovic, R. Wang, G.Y. Lau, C.P. Jacobson, L.C. DeJonghe, S.J. Visco, Performance of metal-supported SOFCs with infiltrated electrodes. J. Power Sources 171(2), 477–482 (2019)

    Google Scholar 

  125. 125.

    Y. Cheng, T.S. Oh, R. Wilson, R.J. Gorte, J.M. Vohs, An Investigation of LSF–YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes. J. Electrochem. Soc. 164(6), F525–F529 (2017)

    CAS  Google Scholar 

  126. 126.

    Y. Sun, Y. Zhang, J. Chen, J.H. Li, Y.T. Zhu, Y.M. Zeng, J.L. Luo, New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett. 16(8), 5303–5309 (2016)

    CAS  Google Scholar 

  127. 127.

    G. Yang, W. Zhou, M. Liu, Z. Shao, Enhancing electrode performance by exsolved nanoparticles: a superior cobalt-free perovskite electrocatalyst for solid oxide fuel cells. ACS Appl. Mater. Interfaces. 8(51), 35308–35314 (2016)

    CAS  Google Scholar 

  128. 128.

    Y. Zhu, W. Zhou, R. Ran, Y. Chen, Z. Shao, M. Liu, Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 16(1), 512–518 (2016)

    CAS  Google Scholar 

  129. 129.

    T. Zhu, H.E. Troiani, L.V. Mogni, M. Han, S.A. Barnett, Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule 2(3), 478–496 (2018)

    CAS  Google Scholar 

  130. 130.

    D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5(11), 916–923 (2013)

    CAS  Google Scholar 

  131. 131.

    D. Neagu, T.S. Oh, D.N. Miller et al., Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Comm. 6, 8120 (2015)

    Google Scholar 

  132. 132.

    N. Zhou, Y.M. Yin, Z. Chen, Y. Song, J. Yin, D. Zhou, Z.F. Ma, A regenerative coking and sulfur resistant composite anode with Cu exsolution for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 165(9), F629–F634 (2018)

    CAS  Google Scholar 

  133. 133.

    S.H. Cui, J.H. Li, X.W. Zhou, G.Y. Wang, J.L. Luo, K.T. Chuang, L.U. Qiao, Cobalt doped LaSrTiO3-δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen. J. Mater. Chem. A. 1(34), 9689–9696 (2013)

    CAS  Google Scholar 

  134. 134.

    A.A. Solovyev, A.M. Lebedynskiy, A.V. Shipilova, I.V. Ionov, Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance. Int. J. Hydrogen Energy 44(58), 30636–30643 (2019)

    CAS  Google Scholar 

  135. 135.

    L. Yang, S. Wang, K. Blinn et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: baZr0. 1Ce0. 7Y0.l 2-xYbxO3-δ. Science 326(5949), 126–129 (2009)

    CAS  Google Scholar 

  136. 136.

    E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, E. Traversa, Chemically stable Pr and y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater. 21(1), 158–166 (2011)

    CAS  Google Scholar 

  137. 137.

    X. Chi, J. Zhang, Z. Wen, Y. Liu, Modified pechini synthesis of proton-conducting Ba (Ce, Ti) O3 and comparative studies of the effects of acceptors on its structure, stability, sinterability, and conductivity. J. Am. Ceram. Soc. 97(4), 1103–1109 (2014)

    CAS  Google Scholar 

  138. 138.

    R. Kannan, S. Gill, N. Maffei, V. Thangadurai, BaCe 0 85–x ZrxSm 0 15O 3-δ (001 < x < 03) (BCZS): effect of Zr content in BCZS on chemical stability in CO2 and H2O vapor, and proton conductivity. J. Electrochem. Soc. 160(1), F18–F26 (2013)

    CAS  Google Scholar 

  139. 139.

    K. Singh, R. Kannan, V. Thangadurai, Synthesis and characterisation of ceramic proton conducting perovskite-type multi-element-doped Ba0. 5Sr0. 5Ce1 − x − y − zZrxGdyYzO3 − δ (0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2). Int. J. Hydrogen Energy 41(30), 13227–13237 (2016)

    CAS  Google Scholar 

  140. 140.

    W.B. Wang, J.W. Liu, Y.D. Li, H.T. Wang, F. Zhang, G.L. Ma, Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature. Solid State Ionics 181(15-16), 667–671 (2010)

    CAS  Google Scholar 

  141. 141.

    C. Chen, G. Ma, Proton conduction in BaCe1− xGdxO3− α at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure. J. Alloys Compd. 485(1–2), 69–72 (2009)

    CAS  Google Scholar 

  142. 142.

    T. Omata, and S. Otsuka-Yao-Matsuo, Electrical properties of proton-conducting Ca2+-doped La2Zr2 O7 with a pyrochlore-type structure J. Eletrochem. Soc. 148(6), E252–E261 (2001)

    CAS  Google Scholar 

  143. 143.

    W. Sun, S. Fang, L. Yan et al., Investigation on proton conductivity of La2Ce2O7 in wet atmosphere: dependence on water vapor partial pressure. Fuel Cells 12(3), 457–463 (2012)

    CAS  Google Scholar 

  144. 144.

    R.Q. Liu, Y.H. Xie, J. De-Wang et al., Synthesis of ammonia at atmospheric pressure with Ce0. 8 M 0. 2O2-δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ionics 177(1-2), 73–76 (2006)

    CAS  Google Scholar 

  145. 145.

    I. A. Amar, C. T. Petit, G. Mann, R. Lan, P. J. Skabara, S. Tao., Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K) 2CO3–Ce0. 8Gd0. 18Ca0. 02O2− δ composite electrolyte and CoFe2O4 cathode. Int. J. Hydrogen Energy, 39(9) 4322–4330 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grants No. NRF-2018R1C1B5044487).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dae-Hwan Park or Jea-ha Myung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jo, S., Sharma, B., Park, DH. et al. Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57, 135–151 (2020). https://doi.org/10.1007/s43207-020-00022-3

Download citation

Keywords

  • Fuel cell
  • Thin films
  • Nanostructure