Skip to main content

A review on the joining of SiC for high-temperature applications


A review on the joining of SiC is given in response to the interest surge on this material for a number of applications. Because the engineering design for the majority of applications requires complicated shapes, there has been a strong demand for the development of reliable joining techniques for SiC, especially for high-temperature applications. However, the joining of SiC-based materials is inherently difficult because of the high degree of covalent bonding in SiC and the low self-diffusivity. This review discusses basic mechanisms and properties of the SiC joining techniques developed to date; they are divided into eight different categories. In addition, critical assessment is given for each technique in the context of high-temperature application (≥ 1000 °C). Finally, comments are provided for the use of these techniques in advanced nuclear reactors where stringent irradiation stability under neutron irradiation as well as hermeticity and joint strength are required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23


  1. 1.

    R. E. Loehman, Recent Progress in Ceramic Joining. Sandia National Laboratory Report, SAND-98-1341C (1998)

  2. 2.

    J.A. Fernie, R.A.L. Drew, K.M. Knowles, Joining of engineering ceramics. Int. Mater. Rev. 54(5), 283–331 (2009)

    CAS  Google Scholar 

  3. 3.

    G. Çam, M. Koçak, Progress in joining of advanced materials. Int. Mater. Rev. 43(1), 1–44 (1998)

    Google Scholar 

  4. 4.

    Y.K. Seo, Y.W. Kim, T. Nishimura, W.S. Seo, High-temperature strength of a thermally conductive silicon carbide ceramic sintered with Yttria and Scandia. J. Eur. Ceram. Soc. 36, 3755–3760 (2016)

    CAS  Google Scholar 

  5. 5.

    F. Rodríguez-Rojas, A.L. Ortiz, F. Guiberteau, M. Nygren, Anomalous oxidation behaviour of pressureless liquid-phase-sintered SiC. J. Eur. Ceram. Soc. 31, 2393–2400 (2011)

    Google Scholar 

  6. 6.

    V.M. Candelario, O. Borrero-López, F. Guiberteau, R. Moreno, A.L. Ortiz, Sliding-wear resistance of liquid-phase-sintered SiC containing graphite nanodispersoids. J. Eur. Ceram. Soc. 34, 2597–2602 (2014)

    CAS  Google Scholar 

  7. 7.

    E. Ciudad, E. Sánchez-González, O. Borrero-López, F. Guiberteau, M. Nygren, A.L. Ortiz, Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3 + 5Al2O3 or Y3Al5O12 additives. Scr. Mater. 69, 598–601 (2013)

    CAS  Google Scholar 

  8. 8.

    L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007)

    CAS  Google Scholar 

  9. 9.

    L.V. Interrante, C.W. Whitmarsh, W. Sherwood, Fabrication of SiC matrix composites by liquid phase infiltration with a polymeric precursor. MRS Online Proc. 365, 139–146 (1994)

    Google Scholar 

  10. 10.

    A. Kovalčíková, J. Dusza, P. Šagalík, Thermal shock resistance and fracture toughness of liquid-phase sintered SiC-based ceramics. J. Eur. Ceram. Soc. 29(11), 2387–2394 (2009)

    Google Scholar 

  11. 11.

    H. Nakano, K. Watari, Y. Kinemuchi, K. Ishizaki, K. Urabe, Microstructural characterization of high-thermal-conductivity SiC ceramics. J. Eur. Ceram. Soc. 24(14), 3685–3690 (2004)

    CAS  Google Scholar 

  12. 12.

    Z. Li, R.C. Bradt, Thermal expansion and thermal expansion anisotropy of SiC. J. Am. Ceram. Soc. 70(7), 445–448 (1987)

    CAS  Google Scholar 

  13. 13.

    P. F. Becher, Strength retention in SiC ceramics after long-term oxidation. J. Am. Ceram. Soc.66(8), C-120–21 (1983)

  14. 14.

    Y. Zhou, W.C. Zhou, F. Luo, D.M. Zhu, Effects of dip-coated BN interphase on mechanical properties of SiCf/SiC composites prepared by CVI process. Trans. Nonferrous Met. Soc. China 24, 1400–1406 (2014)

    CAS  Google Scholar 

  15. 15.

    K. Yoshida, H. Akimoto, T. Yano, M. Kotani, T. Ogasawara, Mechanical properties of unidirectional and crossply SiCf/SiC composites using SiC fibers with carbon interphase formed by electrophoretic deposition process. Prog. Nucl. Energy 82, 148–152 (2015)

    CAS  Google Scholar 

  16. 16.

    J. Yin, S.H. Lee, L. Feng, Y. Zhu, X. Liu, Z. Huang, Fabrication of SiCf/SiC composites by hybrid techniques of electrophoretic deposition and polymer impregnation and pyrolysis. Ceram. Int. 42, 16431–16435 (2016)

    CAS  Google Scholar 

  17. 17.

    Y. Mu, W. Zhou, Y. Hu, D. Ding, F. Luo, Y. Qing, Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process. J. Alloys Compd. 637, 261–266 (2015)

    CAS  Google Scholar 

  18. 18.

    R. Usukawa, H. Oda, T. Ishikawa, Conversion process of amorphous Si–Al–C–O fiber into nearly stoichiometric SiC polycrystalline fiber. J. Korean Ceram. Soc. 53(6), 610–614 (2016)

    CAS  Google Scholar 

  19. 19.

    T. Ishikawa, H. Oda, Structural control aiming for high-performance SiC polycrystalline fiber. J. Korean Ceram. Soc. 53(6), 615–621 (2016)

    CAS  Google Scholar 

  20. 20.

    P. Yonathan, J.H. Lee, H.T. Kim, D.H. Yoon, Properties of SiCf/SiC composites fabricated by slurry infiltration and hot pressing. Mater. Sci. Tech. 27(1), 257–263 (2011)

    Google Scholar 

  21. 21.

    P. Yonathan, J.H. Lee, D.H. Yoon, W.J. Kim, J.Y. Park, Improvement of SiCf/SiC density by slurry infiltration and tape stacking. Mater. Res. Bull. 44, 2116–2122 (2009)

    CAS  Google Scholar 

  22. 22.

    G.Y. Gil, D.H. Yoon, Densification of SiCf/SiC composites by electrophoretic infiltration combined with ultrasonication. J. Ceram. Proc. Res. 12(4), 371–375 (2011)

    Google Scholar 

  23. 23.

    A. Noviyanto, Y.H. Han, D.H. Yoon, Characteristics of SiCf/SiC hybrid composites fabricated by hot pressing and spark plasma sintering. Adv. Appl. Ceram. 110(7), 375–381 (2011)

    CAS  Google Scholar 

  24. 24.

    A. Noviyanto, D.H. Yoon, The effects of pyrolytic carbon interphase thickness on the properties of hot-pressed SiCf/SiC composites. J. Ceram. Proc. Res. 13(4), 392–397 (2012)

    Google Scholar 

  25. 25.

    A. Ortona, T. Fend, H.W. Ryu, K. Raju, D.H. Yoon, Fabrication of cylindrical SiCf/Si/SiC-based composite by electrophoretic deposition and liquid silicon infiltration. J. Eur. Ceram. Soc. 34, 1131–1138 (2014)

    CAS  Google Scholar 

  26. 26.

    A. Ortona, T. Fend, H.W. Ryu, K. Raju, P. Fitriani, D.H. Yoon, Tubular Si-infiltrated SiCf/SiC composites for solar receiver application—Part 1: Fabrication by replica and electrophoretic deposition. Sol. Energy Mater. Sol. C. 132, 123–130 (2015)

    CAS  Google Scholar 

  27. 27.

    A. Ortona, D.H. Yoon, T. Fend, G. Feckler, O. Smirnova, Tubular Si-infiltrated SiCf/SiC composites for solar receiver application—Part 2: Thermal performance analysis and prediction. Sol. Energy Mater. Sol. C. 140, 382–387 (2015)

    CAS  Google Scholar 

  28. 28.

    K. Raju, H.W. Yu, J.Y. Park, D.H. Yoon, Fabrication of SiCf/SiC composites by alternating current electrophoretic deposition (AC–EPD) and hot pressing. J. Eur. Ceram. Soc. 35, 503–511 (2015)

    CAS  Google Scholar 

  29. 29.

    H.W. Yu, P. Fitriani, S. Lee, J.Y. Park, D.H. Yoon, Fabrication of the tube-shaped SiCf/SiC by hot pressing. Ceram. Int. 41, 7890–7896 (2015)

    CAS  Google Scholar 

  30. 30.

    D. H. Yoon, Muksin, K. Raju, Alternating current electrophoretic deposition (AC-EPD) of SiC nanoparticles in an aqueous suspension for the fabrication of SiCf/SiC composites. Dig. J. Nanomater. Biosci. 10(3), 1103–08 (2015)

  31. 31.

    P. Fitriani, A.S. Sharma, D.H. Yoon, Microstructure-flexural strength correlation and efficacy of rare-earth nitrates on the sintering of SiCf/SiC composites. J. Eur. Ceram. Soc. 36, 991–999 (2016)

    CAS  Google Scholar 

  32. 32.

    A.S. Sharma, P. Fitriani, D.H. Yoon, Microstructure-fracture behavior correlation of toughened SiCf/SiC composites prepared by vacuum infiltration and hot pressing. Ceram. Int. 42, 8713–8723 (2016)

    CAS  Google Scholar 

  33. 33.

    P. Fitriani, A. Septiadi, D.H. Yoon, A.S. Sharma, Fabrication of tough SiCf/SiC composites by electrophoretic deposition using a fabric coated with FeO-catalyzed phenolic resin. J. Eur. Ceram. Soc. 37(4), 1311–1320 (2017)

    CAS  Google Scholar 

  34. 34.

    P. Fitriani, A.S. Sharma, A. Septiadi, J.Y. Park, D.H. Yoon, Fabrication of tubular SiCf/SiC using different preform architectures by electrophoretic deposition and hot pressing. Ceram. Int. 43(10), 7618–7626 (2017)

    CAS  Google Scholar 

  35. 35.

    F.W. Zok, Ceramic–matrix composites enable revolutionary gains in turbine engine efficiency. Am. Ceram. Soc. Bull. 95(5), 22–28 (2016)

    CAS  Google Scholar 

  36. 36.

    R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L.L. Snead, W.J. Weber, Promise and challenges of SiCf/SiC composites for fusion energy applications. J. Nucl. Mater. 307–311(2), 1057–1072 (2002)

    Google Scholar 

  37. 37.

    M.I. Idris, H. Konishi, M. Imai, K. Yoshida, T. Yano, Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications. Energy Proc. 71, 328–336 (2015)

    CAS  Google Scholar 

  38. 38.

    J.S. Nadeau, Very high pressure hot pressing of silicon carbide. Am. Ceram. Soc. Bull. 52, 170–174 (1973)

    CAS  Google Scholar 

  39. 39.

    K. Jarrendahl, R.F. Davis, Materials properties and characterization of SiC, pp. 1–20. In: Y. S. Park (ed.) SiC Materials and Device. Academic Press, London (1998)

  40. 40.

    R.N. Ghoshtagore, R.L. Coble, Self-diffusion in silicon carbide. Phys. Rev. 143(2), 623–626 (1966)

    CAS  Google Scholar 

  41. 41.

    S. Prochazka, R.M. Scanlan, Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 58, 72 (1975)

    CAS  Google Scholar 

  42. 42.

    B.W. Lin, M. Imai, T. Yano, T. Iseki, Hot-pressing of β-SiC with Al-B-C additives. J. Am. Ceram. Soc. 69, C67–C68 (1986)

    CAS  Google Scholar 

  43. 43.

    R.L. Coble, Sintering crystalline solids I. Intermediate and final state diffusion models. J. Appl. Phys. 32, 787–792 (1961)

    CAS  Google Scholar 

  44. 44.

    M. Omori, H. Takei, Pressureless Sintering of SiC. J. Am. Ceram. Soc. 65, C92–C96 (1982)

    CAS  Google Scholar 

  45. 45.

    F.K. van Dijen, E. Mayer, Liquid phase sintering of silicon carbide. J. Eur. Ceram. Soc. 16, 413–420 (1996)

    Google Scholar 

  46. 46.

    A.K. Misra, Thermochemical analysis of the silicon carbide-alumina reaction with the reference to liquid-phase sintering of silicon carbide. J. Am. Ceram. Soc. 74, 345–351 (1991)

    CAS  Google Scholar 

  47. 47.

    J.H. She, K. Ueno, Effect of additives content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull. 34, 1629–1636 (1999)

    CAS  Google Scholar 

  48. 48.

    S.G. Lee, W.H. Shim, J.Y. Kim, Y.W. Kim, W.T. Kwon, Effect of sintering-additive composition on the fracture toughness of liquid-phase-sintered SiC ceramics. J. Mater. Sci. Lett. 20, 143–146 (2001)

    CAS  Google Scholar 

  49. 49.

    A. Can, M. Herrmann, D.S. McLachlan, I. Sigalas, J. Adler, Densification of liquid phase sintered silicon carbide. J. Eur. Ceram. Soc. 26, 1707–1713 (2006)

    CAS  Google Scholar 

  50. 50.

    A. Noviyanto, D.H. Yoon, Rare-earth oxide additives for the sintering of silicon carbide. Diam. Relat. Mater. 38, 124–130 (2013)

    CAS  Google Scholar 

  51. 51.

    M. Singh, Joining of sintered silicon carbide ceramics for high-temperature applications. J. Mater. Sci. Lett. 17, 459–461 (1998)

    CAS  Google Scholar 

  52. 52.

    Y. Katoh, L. L. Snead, T. Cheng, C. Shih. W. D. Lewis, T. Koyanagi, T. Hinoki, C. H. Henager Jr., M. Ferraris, Radiation-tolerant joining technologies for silicon carbide ceramics and composites. J. Nucl. Mater. 448, 491–511 (2014)

  53. 53.

    A. Noviyanto, D.H. Yoon, One component metal sintering additive for β-SiC based on thermodynamic calculation and experimental observations. Mater. Res. Bull. 46, 1186–1191 (2011)

    CAS  Google Scholar 

  54. 54.

    K. Bhanumurthy, R. Schmid-Fetzer, Interface reaction between silicon carbide and metals (Ni, Cr, Pd, Zr). Compos. Pt. A Appl. Sci. Manuf. 32, 569–574 (2001)

    Google Scholar 

  55. 55.

    B.V. Cockeram, Flexural strength and shear strength of silicon carbide to silicon carbide joints fabricated by a molybdenum diffusion bonding technique. J. Am. Ceram. Soc. 88(7), 1892–1899 (2005)

    CAS  Google Scholar 

  56. 56.

    Y.I. Jung, J.W. Park, H.G. Kim, D.J. Park, J.Y. Park, W.J. Kim, Effect of Ti an Si interlayer materials on the joining of SiC ceramics. Nucl. Eng. Technol. 48, 1009–1014 (2016)

    CAS  Google Scholar 

  57. 57.

    H. Yang, X. Zhou, W. Shi, J. Wang, P. Li, F. Chen, Q. Deng, J. Lee, Y.H. Han, F. Huang, L. He, S. Du, Q. Huang, Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer. J. Eur. Ceram. Soc. 37, 1233–1241 (2017)

    CAS  Google Scholar 

  58. 58.

    A. Noviyanto, D.H. Yoon, One component metal oxide sintering additive for β-SiC based on thermodynamic calculation and experimental observations. Met. Mater. Int. 18(1), 63–68 (2012)

    CAS  Google Scholar 

  59. 59.

    A. Noviyanto, D.H. Yoon, Metal oxide additives for the sintering of silicon carbide: reactivity and densification. Curr. Appl. Phys. 13, 287–292 (2013)

    Google Scholar 

  60. 60.

    K. Raju, D.H. Yoon, Sintering additives for SiC based on the reactivity: a review. Ceram. Int. 42(16), 17947–17962 (2016)

    CAS  Google Scholar 

  61. 61.

    Y. Yu, H. Dong, B. Ma, Q. Ren, W. Ma, Effect of different filler materials on the microstructure and mechanical properties of SiC–SiC joints joined by spark plasma sintering. J. Alloy. Compd. 708, 373–379 (2017)

    CAS  Google Scholar 

  62. 62.

    S. Dong, Y. Katoh, A. Kohyama, Preparation of SiC/SiC composites by hot pressing, using Tyranno-SA fiber as reinforcement. J. Am. Ceram. Soc. 86(1), 26–32 (2003)

    CAS  Google Scholar 

  63. 63.

    O. Fabrichnaya, H.J. Seifert, R. Weiland, T. Ludwig, F. Aldinger, A. Navrotsky, Phase equilibria and thermodynamics in the Y2O3–Al2O3–SiO2 system. Z. Metallkd. 92, 1083–1096 (2001)

    CAS  Google Scholar 

  64. 64.

    H.C. Jung, Y.H. Park, J.S. Park, T. Hinoki, A. Kohyama, R&D of joining technology for SiC components with channel. J. Nucl. Mater. 386–388, 847–851 (2009)

    Google Scholar 

  65. 65.

    Y. Katoh, A. Kohyama, T. Nozawa, M. Sato, SiC/SiC composites through transient eutectic-phase route for fusion applications. J. Nucl. Mater. 329–333, 587–591 (2004)

    Google Scholar 

  66. 66.

    A.S. Sharma, P. Fitriani, D.H. Yoon, Fabrication of SiCf/SiC and integrated assemblies for nuclear reactor applications. Ceram. Int. 43, 17211–17215 (2017)

    CAS  Google Scholar 

  67. 67.

    C. Lorrette, C. Sauder, L. Chaffron, Progress in developing SiC/SiC composite materials for advanced nuclear reactors, pp. 1–4. In: Proceeding of the 18th International Conference on Composite Materials, Jeju (2011)

  68. 68.

    W. Krenkel, Cost effective processing of CMC composites by melt infiltration (LSI-process). Ceram. Eng. Sci. Proc. 22, 443–454 (2001)

    CAS  Google Scholar 

  69. 69.

    A.J. Caputo, W.J. Lackey, Fabrication of fiber-reinforced ceramic composites by chemical vapor infiltration, pp. 654–67. In: Proceeding of the 8th Annual Conference on Composites and Advanced Ceramic Materials, Florida (1984)

  70. 70.

    K.J. Probst, T.M. Besman, D.P. Stinton, R.A. Lowden, T.J. Anderson, T.L. Starr, Recent advances in forced-flow, thermal-gradient CVI for refractory composites. Surf. Coat. Tech. 120–121, 250–258 (1999)

    Google Scholar 

  71. 71.

    M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H.C. Jung, T. Hinoki, A. Kohyama, Joining of SiC-based materials for nuclear energy applications. J. Nucl. Mater. 417, 379–382 (2011)

    CAS  Google Scholar 

  72. 72.

    A.S. Sharma, P. Fitriani, B.K. Min, D.H. Yoon, Comparison of the proton irradiation-induced damage in SiCf/SiC with Sc-nitrate and Al2O3–Y2O3 sintering additives. J. Eur. Ceram. Soc. 38, 2823–2831 (2018)

    CAS  Google Scholar 

  73. 73.

    P. Fitriani, A.S. Sharma, D.H. Yoon, Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC. J. Nucl. Mater. 503, 226–234 (2018)

    CAS  Google Scholar 

  74. 74.

    T.J. Moore, Feasibility study of the welding of SiC. J. Am. Ceram. Soc. 89, 151–159 (1985)

    Google Scholar 

  75. 75.

    G. A. Rossi, P. J. Pelletier, Joining of SiC Parts by Polishing and Hipping. U.S. Patent 4925608 (1990)

  76. 76.

    S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M.J. Reece, M. Ferraris, Joining of β-SiC by spark plasma sintering. J. Eur. Ceram. Soc. 34, 1681–1686 (2014)

    CAS  Google Scholar 

  77. 77.

    P. Fitriani, A. Septiadi, D.H. Jeong, D.H. Yoon, Joining of SiC monoliths using a thin MAX phase tape and the elimination of joining layer by solid-state diffusion. J. Eur. Ceram. Soc. 38, 3433–3440 (2018)

    CAS  Google Scholar 

  78. 78.

    M. Herrmann, W. Lippmann, A. Hurtado, Y2O3–Al2O3–SiO2-based glass-ceramic fillers for the laser-supported joining of SiC. J. Eur. Ceram. Soc. 34, 1935–1948 (2014)

    CAS  Google Scholar 

  79. 79.

    J. Shelby, S. Minton, C. Lord, M.R. Tuzzolo, Formation and properties of yttrium-aluminosilicate glasses. Phys. Chem. Glasses 3, 93–98 (1992)

    Google Scholar 

  80. 80.

    N. Saito, K. Kai, S. Furusho, K. Nakashima, K. Mori, Properties of nitrogen-containing yttria-alumina-silica melts and glasses. J. Am. Ceram. Soc. 86(4), 711–716 (2003)

    CAS  Google Scholar 

  81. 81.

    R. Harrysson, P. Vomacka, Glass formation in the system Y2O3–Al2O3–SiO2 under conditions of laser melting. J. Eur. Ceram. Soc. 14, 377–381 (1994)

    CAS  Google Scholar 

  82. 82.

    Y. Katoh, M. Kotani, A. Kohyama, M. Montorsi, M. Salvo, M. Ferraris, Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites. J. Nucl. Mater. 283–287, 1262–1266 (2000)

    Google Scholar 

  83. 83.

    M. Ferraris, M. Salvo, C. Sola, M.A. Montorsi, A. Kohyama, Glass-ceramic joining and coating of SiC/SiC for fusion applications. J. Nucl. Mater. 258–263, 1546–1550 (1998)

    Google Scholar 

  84. 84.

    S. Fan, J. Liu, X. Ma, Y. Wang, J. Hu, J. Deng, L. Cheng, L. Zhang, Microstructure and properties of SiCf/SiC joint brazed by Y-Al-Si-O glass. Ceram. Int. 44, 8656–8663 (2018)

    CAS  Google Scholar 

  85. 85.

    V. Casalegno, S. Kondo, T. Hinoki, M. Salvo, A. Czyrska-Filemonowicz, T. Moskalewicz, Y. Katoh, M. Ferraris, CaO-Al2O3 glass-ceramic as a joining material for SiC based components: a microstructural study of the effect of Si-ion irradiation. J. Nucl. Mater. 501, 172–180 (2018)

    CAS  Google Scholar 

  86. 86.

    R. Asthana, M. Singh, 11—Active metal brazing of advanced ceramic composites to metallic system, pp. 323–60. In: D.P. Sekulić (ed.) Advances in Brazing—Science, Technology and Applications. Woodhead Publishing (2013)

  87. 87.

    B. Riccardi, C.A. Nannetti, J. Wolterdorf, E. Pippel, T. Petrisor, Brazing of SiC and SiCf/SiC composites performed with 84Si-16Ti eutectic alloy: microstructure and strength. J. Mater. Sci. 37, 5029–5039 (2002)

    CAS  Google Scholar 

  88. 88.

    B. Riccardi, C.A. Nannetti, T. Petrisor, M. Sacchetti, Low activation brazing materials and techniques for SiCf/SiC composites. J. Nucl. Mater. 307–311, 1237–1241 (2002)

    Google Scholar 

  89. 89.

    J. Li, L. Liu, Y. Wu, W. Zhang, W. Hu, A high temperature Ti-Si eutectic braze for joining SiC. Mater. Lett. 62, 3135–3138 (2008)

    CAS  Google Scholar 

  90. 90.

    I.V. Gorynin, V.A. Ignatov, V.V. Rybin, S.A. Fabritsiev, V.A. Kazatov, V.P. Chakin, V.A. Tsykanov, V.R. Barabash, Y.G. Prokofyev, Effects of neutron irradiation on properties of refractory metals. J. Nucl. Mater. 191–194, 421–425 (1992)

    Google Scholar 

  91. 91.

    J.N. Ness, T.F. Page, Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 21, 1377–1397 (1986)

    CAS  Google Scholar 

  92. 92.

    B.H. Rabin, Joining of fiber-reinforced SiC composites by in situ reaction method. Mater. Sci. Eng. A 130, L1–L5 (1990)

    Google Scholar 

  93. 93.

    M. Singh, Microstructure and mechanical properties of reaction-formed joints in reaction-bonded silicon carbide ceramics. J. Mater. Sci. 33, 5781–5787 (1998)

    CAS  Google Scholar 

  94. 94.

    B.H. Rabin, G.A. Moore, Joining of SiC ceramics and SiCf/SiC composite, pp. 33–42. In: Proceedings of the Seventh Annual Conference on Fossil Energy Materials, Oak Ridge National Laboratory (1993)

  95. 95.

    C.A. Lewinsohn, M. Singh, T. Shibayama, T. Hinoki, M. Ando, Y. Katoh, A. Kohyama, Joining of silicon carbide for fusion energy applications. J. Nucl. Mater. 283–287, 1258–1261 (2000)

    Google Scholar 

  96. 96.

    Z. Luo, D. Jiang, Z. Zhang, Q. Lin, Z. Chen, Z. Huang, Development of SiC–SiC joint by reaction bonding using SiC/C tapes as the interlayer. J. Eur. Ceram. Soc. 32, 3819–3824 (2012)

    CAS  Google Scholar 

  97. 97.

    G.C. Messenger, J.P. Spratt, The effects of neutron irradiation on germanium and silicon. Proc. IRE 46(6), 1038–1044 (1958)

    Google Scholar 

  98. 98.

    L.J. Cheng, J. Lori, Characteristics of neutron damage in silicon. Phys. Rev. 171, 856–862 (1968)

    CAS  Google Scholar 

  99. 99.

    P. Greil, Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835–848 (1995)

    CAS  Google Scholar 

  100. 100.

    S. Yajima, Y. Hasegawa, K. Okamura, T. Matsuzawa, Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature 273, 525–527 (1978)

    CAS  Google Scholar 

  101. 101.

    K. Yoshida, M. Imai, T. Yano, Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation. Compos. Sci. Tech. 61(9), 1323–1329 (2001)

    CAS  Google Scholar 

  102. 102.

    K. Shimoda, A. Kohyama, T. Hinoki, High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction. Compos. Sci. Tech. 69(10), 1623–1628 (2009)

    CAS  Google Scholar 

  103. 103.

    C.A. Lewinsohn, P. Colombo, I. Reimanis, Ö. Ünal, Stresses occurring during joining of ceramics using preceramic polymers. J. Am. Ceram. Soc. 84(10), 2240–2244 (1995)

    Google Scholar 

  104. 104.

    P. Colombo, V. Sglavo, E. Pippel, J. Wolterdorf, Joining of reaction-bonded silicon carbide using a preceramic polymer. J. Mater. Sci. 33, 2405–2412 (1998)

    CAS  Google Scholar 

  105. 105.

    P. Colombo, B. Riccardi, A. Donato, G. Scarinci, Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications. J. Nucl. Mater. 278, 127–135 (2000)

    CAS  Google Scholar 

  106. 106.

    D.H. Jeong, A. Septiadi, P. Fitriani, D.H. Yoon, Joining of SiCf/SiC using polycarbosilane and ploysilazane preceramic mixtures. Ceram. Int. 44, 10443–10450 (2018)

    CAS  Google Scholar 

  107. 107.

    C.H. Henager Jr., Y. Shin, Y. Blum, L.A. Giannuzzi, B.W. Kempshall, S.M. Schwarz, Coatings and joining for SiC and SiC-composites for nuclear energy systems. J. Nucl. Mater. 367–380, 1139–1143 (2007)

    Google Scholar 

  108. 108.

    X. Wang, J. Wang, H. Wang, Joining of SiC ceramics via a novel liquid preceramic polymer (V-PMS). Ceram. Int. 41, 7283–7288 (2015)

    CAS  Google Scholar 

  109. 109.

    M.W. Barsoum, T. El-Raghy, L.U.J.T. Ogbuji, Oxidation of Ti3SiC2 in air. J. Electrochem. Soc. 144(7), 2508–2516 (1997)

    CAS  Google Scholar 

  110. 110.

    M. Rodovic, M.W. Barsoum, MAX phases: bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 92(3), 20–27 (2013)

    Google Scholar 

  111. 111.

    N.J. Lane, S.C. Vogel, E.N. Caspi, M.W. Barsoum, High-temperature neutron diffraction and first-principles study of temperature-dependent crystal structures and atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3. J. Appl. Phys. 113, 183519 (2013)

    Google Scholar 

  112. 112.

    S. Myhra, J.W.B. Summers, E.H. Kisi, Ti3SiC2—a layered ceramic exhibiting ultra-low friction. Mater. Lett. 39, 6–11 (1999)

    CAS  Google Scholar 

  113. 113.

    W. Jeitschko, H. Nowotny, Die Kristallstruktur von Ti3SiC2-Ein Neuer Komplexcarbid-Typ. Monatsh. Chem. 98(2), 329–337 (1967)

    CAS  Google Scholar 

  114. 114.

    D. Dong, S. Li, Y. Teng, W. Ma, Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2. Mater. Sci. Eng. B 176, 60–64 (2011)

    CAS  Google Scholar 

  115. 115.

    C. Jiménez, K. Mergia, M. Lagos, P. Yialouris, I. Agote, V. Liedtke, S. Messoloras, Y. Panayiotatos, E. Padovano, C. Badini, C. Wilhelmi, J. Barcena, Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems. J. Eur. Ceram. Soc. 36, 443–449 (2016)

    Google Scholar 

  116. 116.

    P. Tatarko, Z. Chlup, A. Mahajan, V. Casalegno, T.G. Saunders, I. Dlouhý, M.J. Reece, High temperature properties of the monolithic CVD β-SiC materials joined with a pre-sintered MAX phase Ti3SiC2 interlayer via solid-state diffusion bonding. J. Eur. Ceram. Soc. 37, 1205–1216 (2017)

    CAS  Google Scholar 

  117. 117.

    X. Zhou, Z. Liu, Y. Li, Y. Li, P. Li, F. Huang, S. Ding, J. Lee, S. Du, Q. Huang, SiC ceramics joined with in-situ reaction gradient layer of TiC/Ti3SiC2 and interface stress distribution simulations. Ceram. Int. 44, 15785–15794 (2018)

    CAS  Google Scholar 

  118. 118.

    F. Valenza, S. Gambaro, M.L. Muolo, M. Salvo, V. Casalegno, Wetting of SiC by Al–Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2. J. Eur. Ceram. Soc. 38, 3727–3734 (2018)

    CAS  Google Scholar 

  119. 119.

    A. Septiadi, P. Fitriani, A.S. Sharma, D.H. Yoon, Low pressure joining of SiCf/SiC composites using Ti3AlC2 or Ti3SiC2 MAX phase tape. J. Korean Ceram. Soc. 54(4), 340–348 (2017)

    CAS  Google Scholar 

  120. 120.

    P. Fitriani, D.H. Yoon, Joining of SiCf/SiC using a Ti3AlC2 filler and subsequent elimination of the joining layer. Ceram. Int. 44, 22943–22949 (2018)

    CAS  Google Scholar 

  121. 121.

    X. Zhou, J. Liu, S. Zou, K. Xu, K. Chang, P. Li, F. Huang, Z. Huang, Q. Huang, Almost seamless joining of SiC using an in-situ reaction transition phase of Y3Si2C2. J. Eur. Ceram. Soc. (2019) (in press)

  122. 122.

    Y. Katoh, L.L. Snead, T. Cheng, C. Shih, W.D. Lewis, T. Koyanagi, T. Hinoki, C.H. Henager Jr., M. Ferraris, Radiation-tolerant joining technology for silicon carbide ceramics and composites. J. Nucl. Mater. 448, 497–511 (2014)

    CAS  Google Scholar 

  123. 123.

    J. Y. Park, SiCf/SiC composites as core materials for generation IV nuclear reactors, pp. 441–70. In: P. Yvon (ed.) Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing (2017)

  124. 124.

    G. Newsome, L.L. Snead, T. Hinoki, Y. Katoh, D. Peters, Evaluation of neutron irradiated silicon carbide and silicon carbide composites. J. Nucl. Mater. 371, 76–89 (2007)

    CAS  Google Scholar 

  125. 125.

    K. Koyanagi, K. Ozawa, T. Hinoki, K. Shimoda, K. Katoh, Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process. J. Nucl. Mater. 448, 478–486 (2014)

    CAS  Google Scholar 

  126. 126.

    M. Ferraris, V. Casalegno, S. Rizzo, M. Salvo, T.O. Van Staveren, J. Matejicek, Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications. J. Nucl. Mater. 429, 166–172 (2012)

    CAS  Google Scholar 

  127. 127.

    J.C. Corelli, J. Hoole, J. Lazzaro, C.W. Lee, Mechanical, thermal, and microstructural properties of neutron-irradiated SiC. J. Am. Ceram. Soc. 66, 529–537 (1983)

    CAS  Google Scholar 

  128. 128.

    R.B. Matthews, Irradiation damage in reaction-bonded silicon carbide. J. Nucl. Mater. 51, 203–208 (1974)

    CAS  Google Scholar 

  129. 129.

    R.A. Matheny, J.C. Corelli, G.G. Trantina, Radiation damage in silicon carbide and graphite for fusion reactor first wall applications. J. Nucl. Mater. 83, 313–321 (1979)

    CAS  Google Scholar 

  130. 130.

    L.L. Snead, M. Osborne, K.L. More, Effects of radiation on SiC-based nicalon fibers. J. Mater. Res. 10(3), 736–747 (1995)

    CAS  Google Scholar 

  131. 131.

    J.C. Nappé, I. Monnet, P. Grossseau, F. Audubert, B. Guilhot, M. Beauvy, M. Benabdesselam, L. Thomé, Structural changes induced by heavy ion irradiation in titanium silicon carbide. J. Nucl. Mater. 409, 53–61 (2011)

    Google Scholar 

  132. 132.

    C.H. Henager Jr., R.J. Kurtz, Low-activation joining of SiC/SiC composites for fusion applications. J. Nucl. Mater. 417, 375–378 (2011)

    CAS  Google Scholar 

  133. 133.

    X. Dai, J. Cao, Z. Chen, X. Song, J. Feng, Brazing SiC ceramic using novel B4C reinforced Ag–Cu–Ti composite filler. Ceram. Int. 42, 6319–6328 (2016)

    CAS  Google Scholar 

Download references


This study was supported by the Basic Science Research Program funded by the Korea Ministry of Education (NRF-2018R1D1A1B07043343).

Author information



Corresponding author

Correspondence to Dang-Hyok Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, DH., Reimanis, I.E. A review on the joining of SiC for high-temperature applications. J. Korean Ceram. Soc. 57, 246–270 (2020).

Download citation


  • SiC
  • Joining
  • High-temperature applications
  • Interfaces
  • Nuclear reactors