Skip to main content
Log in

Sintering behavior and technological properties of nano-cubic zirconia/calcium zirconate ceramic composites

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Zirconia–calcium zirconate ceramic composites were synthesized and their densification parameters and microhardness were investigated. Zirconium chloride and limestone were mixed in different molar ratios: 1:1 (Z1), 2:1 (Z2), 3:1 (Z3), and 4:1 (Z4) to prepare the composites using the co-precipitation method. The precursors were fired at 900 °C for 1 h. The four samples (Z1, Z2, Z3, and Z4) were then shaped and sintered at 1550 °C for 2 h. The phase compositions and microstructures of the sintered samples were investigated by X-ray diffraction and scanning electron microscopy. The results indicated that the particle sizes of all the prepared powders were within the nanometric size range (43–67 nm). In addition, the densification parameters [bulk density ~ 4.2 g/cm3 and apparent porosity (AP) ~ 0.16%] and microhardness (~ 565.76 HV) of the sintered samples improved with an increase in cubic zirconia content. While the AP of the samples increased with an increase in the calcium zirconate phase fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.L.P. Santos, F.S. Silva, R.M. Nascimento, F.V. Motta, J.C.M. Souza, B. Henriques, On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain. Ceram. Int. 42, 14214–14221 (2016)

    Article  CAS  Google Scholar 

  2. F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd edn. (Springer, London, 2008). ISBN 978-1-84628-668-1

    Google Scholar 

  3. D. Fang, Z. Luo, S. Liu, T. Zeng, L. Liu, J. Xu, Z. Bai, W. Xu, Photoluminescence properties and photocatalytic activities of zirconia nanotube arrays fabricated by anodization. Opt. Mater. 35, 1461–1466 (2013)

    Article  CAS  Google Scholar 

  4. N. Takahashi, A. Suda, I. Hachisuka, M. Sugiura, H. Sobukawa, H. Shinjoh, Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2–TiO2 mixed oxides. Appl. Catal. B 72, 187–195 (2007)

    Article  CAS  Google Scholar 

  5. S. de Souza, S.J. Visco, L.C. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ion. 98, 57–61 (1997)

    Article  Google Scholar 

  6. E. Ivers-Tiffée, K.H. Härdtl, W. Menesklou, J. Riegel, Principles of solid state oxygen sensors for lean combustion gas control. Electrochim. Acta 47, 807–814 (2001)

    Article  Google Scholar 

  7. L. Gonga, M. Maa, C. Xua, X. Lia, S. Wangc, J. Lina, Q. Yanga, Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process. J. Lumin. 134, 718–723 (2013)

    Article  Google Scholar 

  8. J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W. Leite Alves, S.C.P. Rodrigues, E.F. da Silva Jr., Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 100, 104103 (2006)

    Article  Google Scholar 

  9. Y.M. Park, D.W. Lee, D.K. Kim, J.S. Lee, K.Y. Lee, The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 131, 238–243 (2008)

    Article  CAS  Google Scholar 

  10. G.M. Rignanese, F. Detraux, X. Gonze, A. Pasquarello, First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys. Rev. B 64, 134301 (2001)

    Article  Google Scholar 

  11. Z. Feng, W.S. Postula, A. Akgerman, R.G. Anthony, Characterization of zirconia-based catalysts prepared by precipitation, calcination, and modified sol–gel methods. Ind. Eng. Chem. Res. 34, 78–82 (1995)

    Article  CAS  Google Scholar 

  12. J. Liang, X. Jiang, G. Liu, Z. Deng, J. Zhuang, F. Li, Y. Li, Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater. Res. Bull. 38, 161–168 (2003)

    Article  CAS  Google Scholar 

  13. T. Mimani, K.C. Patil, Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134–137 (2001)

    CAS  Google Scholar 

  14. K.R. Venkatachari, D. Huang, S.P. Ostrander, W.A. Schulze, G.C. Stangle, Preparation of nanocrystalline yttria-stabilized zirconia. J. Mater. Res. 10, 756–761 (1995)

    Article  CAS  Google Scholar 

  15. Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date, Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71, 235–241 (2001)

    Article  CAS  Google Scholar 

  16. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, G.C. Pellacani, Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J. Am. Ceram. Soc. 84, 2728–2730 (2001)

    Article  CAS  Google Scholar 

  17. S. Manjunatha, M.S. Dharmaprakash, Synthesis and characterization of cerium doped ZrO2 blue–green emitting nanophosphors. Mater. Lett. 164, 476–479 (2016)

    Article  CAS  Google Scholar 

  18. G. Ye, T. Troczynski, Mechanochemical activation-assisted low-temperature synthesis of CaZrO3. J. Am. Ceram. Soc. 90, 287–290 (2007)

    Article  CAS  Google Scholar 

  19. S. Schafföner, C.G. Aneziris, H. Berek, J. Hubálková, A. Priese, Fused calcium zirconate for refractory applications. J. Eur. Ceram. Soc. 33, 3411–3418 (2013)

    Article  Google Scholar 

  20. A.G.M. Othman, W.M.N. Nour, M.M.S. Wahsh, H. El-Didamony, Structural and technological properties of zircon-limestone–zirconia compositions for ceramic and refractory applications. [Interceram, Refractories Manual, 9–13 (2009)]

  21. S. Schafföner, T. Qin, J. Fruhstorfer, C. Jahn, G. Schmidt, H. Jansen, C.G. Aneziris, Refractory castables for titanium metallurgy based on calcium zirconate. Mater. Des. 148, 78–86 (2018)

    Article  Google Scholar 

  22. A.G.M. Othman, W.M.N. Nour, M.M.S. Wahsh, H. El-Didamony, MgO–CaZrO3–β Ca2SiO4 based composite refractories for application in firing zone of rotary cement kilns. Interceram 5, 287–295 (2009)

    Google Scholar 

  23. A.G.M. Othman, W.M.N. Nour, M.M.S. Wahsh, H. El-Didamony, Anti-clogging nozzle refractories composed of calcium zirconate–dicalcium silicate–carbon for application in steel industry. Refract. Eng. January Issue, 14–22 (2010)

    Google Scholar 

  24. T. Yu, C.H. Chen, X.F. Chen, W. Zhu, R.G. Krishnan, Fabrication and characterization of perovskite CaZrO3 oxide thin films. Ceram. Int. 30, 1279–1282 (2004)

    Article  CAS  Google Scholar 

  25. G. Róg, M. Dudek, A. Kozłowska-Róg, M. Bućko, Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells. Electrochim. Acta 47, 4523–4529 (2002)

    Article  Google Scholar 

  26. R.S. André, S.M. Zanetti, J.A. Varela, E. Longo, Synthesis by a chemical method and characterization of CaZrO3 powders: potential application as humidity sensors. Ceram. Int. 40, 16627–16634 (2014)

    Article  Google Scholar 

  27. W.J. Lee, A. Wakahara, B.H. Kim, Decreasing of CaZrO3 sintering temperature with glass frit addition. Ceram. Int. 31, 521–524 (2005)

    Article  CAS  Google Scholar 

  28. C. Jahn, S. Schafföner, C. Ode, H. Jansen, C.G. Aneziris, Investigation of calcium zirconate formation by sintering zirconium dioxide with calcium hydroxide. Ceram. Int. 44, 11274–11281 (2018)

    Article  CAS  Google Scholar 

  29. M. Dudek, G. Róg, W. Bogusz, A. Kozlowska-Róg, M. Bućko, Ł. Zych, Calcium zirconate as a solid electrolyte for electrochemical devices applied in metallurgy. Mater. Sci. Pol. 24, 253–260 (2006)

    CAS  Google Scholar 

  30. G. Dell’Agli, G. Mascolo, Low temperature hydrothermal synthesis of ZrO2–CaO solid solutions. J. Mater. Sci. 35, 661–665 (2000)

    Article  Google Scholar 

  31. K. Boobalan, A. Varun, R. Vijayaraghavan, K. Chidambaram, U. Kamachi Mudali, Facile, scalable synthesis of nanocrystalline calcium zirconate by the solution combustion method. Ceram. Int. 40, 5781–5786 (2014)

    Article  CAS  Google Scholar 

  32. I. Erkin Gonenli, A. Cüneyt Tas, Chemical synthesis of pure and Gd-doped CaZrO3 powders. J. Eur. Ceram. Soc. 19, 2563–2567 (1999)

    Article  Google Scholar 

  33. R. Chaim, M. Levin, A. Shlayer, C. Estournès, Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv. Appl. Ceram. Struct. Funct. Bioceram. J. Adv. Psychiatr. Treat. 107, 159–169 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. S. Wahsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahsh, M.M.S., Gaber, A.A. & Othman, A.G.M. Sintering behavior and technological properties of nano-cubic zirconia/calcium zirconate ceramic composites. J. Korean Ceram. Soc. 57, 161–166 (2020). https://doi.org/10.1007/s43207-019-00013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-019-00013-z

Keywords

Navigation