Skip to main content

Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors

Abstract

Perovskite-type oxides with general stoichiometry ABO3 (A is a lanthanide or alkali earth metal, and B is transition metal) constitute a rich material playground for application as resistive-type gas-sensing layers. Immense interest is triggered by, among other factors, stability of abundant elements (≈ 90% in the periodic table) in this stoichiometry, relatively easy tunability of structure and chemical composition, and their off-stoichiometry stability upon doping. Moreover, their capability to host cationic and abundant oxygen vacancies renders them with excellent electrical and redox properties, and synergistic functions that influence their performance. Herein, we present an overview of recent development in the use of ABO3 perovskites as resistive-type gas sensors, clearly elucidating current experimental strategies, and sensing mechanisms involved in realization of enhanced sensing performance. Finally, we provide a brief overview of limitations that hamper their potential utilization in gas sensors and suggest new pathways for novel applications of ABO3 materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001)

    CAS  Google Scholar 

  2. 2.

    P. Porta, S. Cimino, S. De Rossi, M. Faticanti, G. Minelli, I. Pettiti, AFeO3 (A = La, Nd, Sm) and LaFe1−xMgxO3 perovskites: structural and redox properties. Mater. Chem. Phys. 71(2), 165–173 (2001)

    CAS  Google Scholar 

  3. 3.

    K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, S. Liu, Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv. 1(9), 1661–1676 (2011)

    CAS  Google Scholar 

  4. 4.

    H. Mizoguchi, P.M. Woodward, S.H. Byeon, J.B. Parise, Polymorphism in NaSbO3: structure and bonding in metal oxides. J. Am. Chem. Soc. 126(10), 3175–3184 (2004)

    CAS  Google Scholar 

  5. 5.

    H. Wu, F. Li, Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO3−δ (δ = 1/3) thin film: a first-principles-based study. Phys. Lett. A 383(2-3), 210–214 (2019)

    CAS  Google Scholar 

  6. 6.

    M. Cherry, M.S. Islam, C.R.A. Catlow, Oxygen ion migration in perovskite-type oxides. J. Solid State Chem. 118(1), 125–132 (1995)

    CAS  Google Scholar 

  7. 7.

    J. Qin, Z. Cui, X. Yang, S. Zhu, Z. Li, Y. Liang, Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sens. Actuators B 209, 706–713 (2015)

    CAS  Google Scholar 

  8. 8.

    M.M. Natile, A. Ponzoni, I. Concina, A. Glisenti, Chemical tuning versus microstructure features in solid-state gas sensors: laFe1−xGaxO3, a case study. Chem. Mater. 26(4), 1505–1513 (2014)

    CAS  Google Scholar 

  9. 9.

    J. Hwang, Z. Feng, N. Charles, X.R. Wang, D. Lee, K.A. Stoerzinger, S. Muy, R.R. Rao, D. Lee, R. Jacobs, Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro) catalysis and ferroelectricity (Mater, Today, 2019)

    Google Scholar 

  10. 10.

    H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.-G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, Physical properties of transparent perovskite oxides (Ba, La) SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86(16), 165205 (2012)

    Google Scholar 

  11. 11.

    M.M. Kuklja, Y.A. Mastrikov, B. Jansang, E.A. Kotomin, The intrinsic defects, disordering, and structural stability of BaxSr1−x CoyFe1–yO3−δ perovskite solid solutions. J. Phys. Chem. C 116(35), 18605–18611 (2012)

    CAS  Google Scholar 

  12. 12.

    S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, T. Grande, Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178(35-36), 1787–1791 (2008)

    Google Scholar 

  13. 13.

    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    CAS  Google Scholar 

  14. 14.

    B. Han, K.A. Stoerzinger, V. Tileli, A.D. Gamalski, E.A. Stach, Y. Shao-Horn, Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 16(1), 121 (2017)

    CAS  Google Scholar 

  15. 15.

    K.D. Kreuer, Proton-conducting oxides. Annu. Rev. Mater. Res. 33(1), 333–359 (2003)

    CAS  Google Scholar 

  16. 16.

    M.A. Gomez, D.L. Fry, M.E. Sweet, Effects on the proton conduction limiting barriers and trajectories in BaZr0.875Y0.125O3 due to the presence of other protons. J. Korean Ceram. Soc. 53(5), 521–528 (2016)

    CAS  Google Scholar 

  17. 17.

    J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki, Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−. J. Solid State Chem. 58(2), 257–266 (1985)

    CAS  Google Scholar 

  18. 18.

    T. Mayeshiba, D. Morgan, Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ionics 311, 105–117 (2017)

    CAS  Google Scholar 

  19. 19.

    D.A. Kuznetsov, B. Han, Y. Yu, R.R. Rao, J. Hwang, Y. Román-Leshkov, Y. Shao-Horn, Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2(2), 225–244 (2018)

    CAS  Google Scholar 

  20. 20.

    L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for Gas Sensing Application. Mater. Chem. Phys. 125(1-2), 305–308 (2011)

    CAS  Google Scholar 

  21. 21.

    J. Zhang, C. Zhang, W. Li, Q. Guo, H. Gao, Y. You, Y. Li, Z. Cui, K.C. Jiang, H. Long, Nitrogen-doped perovskite as a bifunctional cathode catalyst for rechargeable lithium-oxygen batteries. ACS Appl. Mater. Interfaces. 10(6), 5543–5550 (2018)

    CAS  Google Scholar 

  22. 22.

    W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019)

    CAS  Google Scholar 

  23. 23.

    M.L. Post, J.J. Tunney, D. Yang, X. Du, D.L. Singleton, Material chemistry of perovskite compounds as chemical sensors. Sens. Actuators B 59(2-3), 190–194 (1999)

    CAS  Google Scholar 

  24. 24.

    S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S.I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356(6334), 167–171 (2017)

    CAS  Google Scholar 

  25. 25.

    H.U. Anderson, Review of P-type doped perovskite materials for SOFC and other applications. Solid State Ionics 52(1-3), 33–41 (1992)

    CAS  Google Scholar 

  26. 26.

    H. Obayashi, Y. Sakurai, T. Gejo, Perovskite-Type Oxides as Ethanol Sensors. J. Solid State Chem. 17(3), 299–303 (1976)

    CAS  Google Scholar 

  27. 27.

    T. Seiyama, N. Yamazoe, K. Eguchi, Characterization and activity of some mixed metal oxide catalysts. Ind. Eng. Chem. Prod. Res. Dev. 24(1), 19–27 (1985)

    CAS  Google Scholar 

  28. 28.

    S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces. 6(16), 13917–13927 (2014)

    CAS  Google Scholar 

  29. 29.

    A. Queraltó, D. Graf, R. Frohnhoven, T. Fischer, H. Vanrompay, S. Bals, A. Bartasyte, S. Mathur, LaFeO3 nanofibers for high detection of sulfur-containing gases. ACS Sustain Chem. Eng. 7(6), 6023–6032 (2019)

    Google Scholar 

  30. 30.

    Y. Shimizu, M. Shimabukuro, H. Arai, T. Seiyama, Enhancement of humidity sensitivity for perovskite-type oxides having semiconductivity. Chem. Lett. 14(7), 917–920 (1985)

    Google Scholar 

  31. 31.

    X.L. Yu, Y. Wang, Y.M. Hu, C.B. Cao, H.L.W. Chan, Gas-sensing properties of perovskite BifeO3 nanoparticles. J. Am. Ceram. Soc. 92(12), 3105–3107 (2009)

    CAS  Google Scholar 

  32. 32.

    H.T. Fan, X.J. Xu, X.K. Ma, T. Zhang, Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery. Nanotechnology 22(11), 115502 (2011)

    Google Scholar 

  33. 33.

    P. Song, Q. Wang, Z. Zhang, Z. Yang, Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sens. Actuators B 147(1), 248–254 (2010)

    CAS  Google Scholar 

  34. 34.

    M.C. Carotta, M.A. Butturi, G. Martinelli, Y. Sadaoka, P. Nunziante, E. Traversa, Microstructural evolution of nanosized LaFeO3 powders from the thermal decomposition of a cyano-complex for thick film gas sensors. Sens. Actuators B 44(1-3), 590–594 (1997)

    CAS  Google Scholar 

  35. 35.

    H. Xiao, C. Xue, P. Song, J. Li, Q. Wang, Preparation of porous LaFeO3 microspheres and their gas-sensing property. Appl. Surf. Sci. 337, 65–71 (2015)

    CAS  Google Scholar 

  36. 36.

    D. Wang, X. Chu, M. Gong, Single-Crystalline LaFeO3 Nanotubes with Rough Tube Walls: Synthesis and Gas-Sensing Properties. Nanotechnology 17(21), 5501 (2006)

    CAS  Google Scholar 

  37. 37.

    M. Fleischer, S. Kornely, T. Weh, J. Frank, H. Meixner, Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens. Actuators B 69(1-2), 205–210 (2000)

    CAS  Google Scholar 

  38. 38.

    J.W. Yoon, J.S. Kim, T.H. Kim, Y.J. Hong, Y.C. Kang, J.H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12(31), 4229–4240 (2016)

    CAS  Google Scholar 

  39. 39.

    H.Y. Li, C.S. Lee, D.H. Kim, J.H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces. 10(33), 27858–27867 (2018)

    CAS  Google Scholar 

  40. 40.

    X.H. Ma, H.Y. Li, S.H. Kweon, S.Y. Jeong, J.H. Lee, S. Nahm, Highly sensitive and selective PbTiO3 gas sensors with negligible humidity interference in ambient atmosphere. ACS Appl. Mater. Interfaces. 11(5), 5240–5246 (2019)

    CAS  Google Scholar 

  41. 41.

    T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116(9), 3801–3803 (1994)

    CAS  Google Scholar 

  42. 42.

    S. Palimar, S. Kaushik, V. Siruguri, D. Swain, A.E. Viegas, C. Narayana, N.G. Sundaram, Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas. Dalton Trans. 45(34), 13547–13555 (2016)

    CAS  Google Scholar 

  43. 43.

    A.A. Ansari, N. Ahmad, M. Alam, S.F. Adil, S.M. Ramay, A. Albadri, A. Ahmad, A.M. Al-Enizi, B.F. Alrayes, M.E. Assal, Physico-chemical properties and catalytic activity of the sol-gel prepared ce-ion doped LaMnO3 perovskites. Sci. Rep. 9(1), 7747 (2019)

    Google Scholar 

  44. 44.

    P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Acetone gas-sensing performance of sr-doped nanostructured LaFeO-3 semiconductor prepared by citrate sol–gel route. Curr. Appl. Phys. 11(3), 451–456 (2011)

    Google Scholar 

  45. 45.

    K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens. Actuators B 177, 265–269 (2013)

    CAS  Google Scholar 

  46. 46.

    L. Zhou, X. Li, H. Wu, Z. Liao, Q. Yuan, F. Xia, J. Xiao, Sensing properties of YSZ-based NOx sensors with double-perovskite (La0.8Sr0.2) 2FeNiO6−δ-sensing electrodes. Ceram. Int. 40(7), 9257–9263 (2014)

    CAS  Google Scholar 

  47. 47.

    L.B. Kong, Y.S. Shen, Gas-sensing property and mechanism of CaxLa1−xFeO3 ceramics. Sens. Actuators B 30(3), 217–221 (1996)

    CAS  Google Scholar 

  48. 48.

    J. Qin, Z. Cui, X. Yang, S. Zhu, Z. Li, Y. Liang, Three-dimensionally ordered macroporous La1−xMgxFeO3 as high performance gas sensor to methanol. J. Alloys Compd. 635, 194–202 (2015)

    CAS  Google Scholar 

  49. 49.

    V. Lantto, S. Saukko, N.N. Toan, L.F. Reyes, C.G. Granqvist, Gas sensing with perovskite-like oxides having ABO3 and BO3 structures. J. Electroceram. 13(1-3), 721–726 (2004)

    CAS  Google Scholar 

  50. 50.

    M. Bektas, D. Schönauer-Kamin, G. Hagen, A. Mergner, C. Bojer, S. Lippert, W. Milius, J. Breu, R. Moos, BaFe1−xTaxO3−δ—a material for temperature independent resistive oxygen sensors. Sens. Actuators B 190, 208–213 (2014)

    CAS  Google Scholar 

  51. 51.

    J. Gerblinger, M. Hausner, H. Meixner, Electric and kinetic properties of screen-printed strontium titanate films at high temperatures. J. Am. Ceram. Soc. 78(6), 1451–1456 (1995)

    CAS  Google Scholar 

  52. 52.

    F. Rettig, R. Moos, C. Plog, Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide. J. Electroceram. 13(1-3), 733–738 (2004)

    CAS  Google Scholar 

  53. 53.

    P.M. Bulemo, J. Lee, I.D. Kim, Heterogeneous porous WO3@ SnO2 nanofibers as gas sensing layers for chemiresistive sensory devices. J. Sens. Sci. Technol. 27(5), 345–351 (2018)

    Google Scholar 

  54. 54.

    A. Sharma, M. Tomar, V. Gupta, Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas. Sens. Actuators B 161(1), 1114–1118 (2012)

    CAS  Google Scholar 

  55. 55.

    Y. Gui, F. Dong, Y. Zhang, Y. Zhang, J. Tian, Preparation and gas sensitivity of WO3 hollow microspheres and SnO2 doped heterojunction sensors. Mater. Sci. Semicond. Process. 16(6), 1531–1537 (2013)

    CAS  Google Scholar 

  56. 56.

    T.S. Wang, Q.S. Wang, C.L. Zhu, Q.Y. Ouyang, L.H. Qi, C.Y. Li, G. Xiao, P. Gao, Y.J. Chen, Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO pn junction nanocomposite. Sens. Actuators B 171, 256–262 (2012)

    Google Scholar 

  57. 57.

    Z.U. Abideen, J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Electrospun metal oxide composite nanofibers gas sensors: a review. J. Korean Ceram. Soc. 54(5), 366–379 (2017)

    Google Scholar 

  58. 58.

    S. Joshi, F. Antolasic, M.V. Sunkara, S.K. Bhargava, S.J. Ippolito, Highly selective CO2 gas sensing properties of CaO–BaTiO3 heterostructures effectuated through discretely created n–n nanointerfaces. ACS Sustain Chem. Eng. 6(3), 4086–4097 (2018)

    CAS  Google Scholar 

  59. 59.

    Y. Wang, Y. Zhu, S. Wu, A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem. Eng. J. 218, 39–45 (2013)

    CAS  Google Scholar 

  60. 60.

    N. Zhang, S. Ruan, Y. Yin, F. Li, S. Wen, Y. Chen, Self-sacrificial template-driven LaFeO3/α-Fe2O3 porous nano-octahedrons for acetone sensing. ACS Appl. Nano Mater. 1(9), 4671–4681 (2018)

    CAS  Google Scholar 

  61. 61.

    Q. Peng, J. Wang, Z. Feng, C. Du, Y. Wen, B. Shan, R. Chen, Enhanced photoelectrochemical water oxidation by fabrication of p-LaFeO3/n-Fe2O3 heterojunction on hematite nanorods. J. Phys. Chem. C 121(24), 12991–12998 (2017)

    CAS  Google Scholar 

  62. 62.

    W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, S. Ruan, High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers. J. Alloys Compd. 695, 1122–1127 (2017)

    CAS  Google Scholar 

  63. 63.

    Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite. Sens. Actuators B 190, 171–176 (2014)

    CAS  Google Scholar 

  64. 64.

    S. Joshi, S.J. Ippolito, S. Periasamy, Y.M. Sabri, M.V. Sunkara, Efficient heterostructures of Ag@CuO/BaTiO3 for low-temperature CO-2 Gas detection: assessing the role of nanointerfaces during sensing by operando DRIFTS technique. ACS Appl. Mater. Interfaces. 9(32), 27014–27026 (2017)

    CAS  Google Scholar 

  65. 65.

    H. Zhang, H. Qin, P. Zhang, J. Hu, High sensing properties of 3 Wt% Pd-doped SmFe1–xMgxO3 nanocrystalline powders to acetone vapor with ultralow concentrations under light illumination. ACS Appl. Mater. Interfaces. 10(18), 15558–15564 (2018)

    CAS  Google Scholar 

  66. 66.

    L. Dai, L. Ma, W. Meng, Y. Li, Z. He, L. Wang, Impedancemetric NO2 sensor based on Pd doped perovskite oxide sensing electrode conjunction with phase angle response. Electrochim. Acta 265, 411–418 (2018)

    CAS  Google Scholar 

  67. 67.

    E. Cao, A. Wu, H. Wang, Y. Zhang, W. Hao, L. Sun, Enhanced ethanol sensing performance of Au and Cl comodified LaFeO3 nanoparticles. ACS Appl. Nano Mater. 2(3), 1541–1551 (2019)

    CAS  Google Scholar 

  68. 68.

    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546 (2011)

    CAS  Google Scholar 

  69. 69.

    C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973), 1624–1627 (2010)

    CAS  Google Scholar 

  70. 70.

    B.P. Barbero, J.A. Gamboa, L.E. Cadús, Synthesis and characterisation of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl. Catal. B 65(1–2), 21–30 (2006)

    CAS  Google Scholar 

  71. 71.

    J. Zhu, A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Appl. Catal. B 92(3–4), 225–233 (2009)

    CAS  Google Scholar 

  72. 72.

    Z. Du, P. Yang, L. Wang, Y. Lu, J.B. Goodenough, J. Zhang, D. Zhang, Electrocatalytic performances of LaNi1−xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. J. Power Sour 265, 91–96 (2014)

    CAS  Google Scholar 

  73. 73.

    D.W. Hwang, H.G. Kim, J. Kim, K.Y. Cha, Y.G. Kim, J.S. Lee, Photocatalytic water splitting over highly donor-doped (110) layered perovskites. J. Catal. 193(1), 40–48 (2000)

    CAS  Google Scholar 

  74. 74.

    H. Zhang, J. Yi, Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles. Mater. Lett. 216, 196–198 (2018)

    CAS  Google Scholar 

  75. 75.

    H.J. Lin, J.P. Baltrus, H. Gao, Y. Ding, C.Y. Nam, P. Ohodnicki, P.X. Gao, Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection at high temperature. ACS Appl. Mater. Interfaces. 8(14), 8880–8887 (2016)

    CAS  Google Scholar 

  76. 76.

    J.Y. Kang, J.S. Jang, W.T. Koo, J. Seo, Y. Choi, M.H. Kim, D.H. Kim, H.J. Cho, W. Jung, I.D. Kim, Perovskite La0.75Sr0.25Cr0.5Mn0.5O3−δ sensitized SnO2 fiber-in-tube scaffold: highly selective and sensitive formaldehyde sensing. J. Mater. Chem. A 6(22), 10543–10551 (2018)

    CAS  Google Scholar 

  77. 77.

    N. Yamazoe, Y. Kurokawa, T. Seiyama, Effects of additives on semiconductor gas sensors. Sens. Actuators 4, 283–289 (1983)

    CAS  Google Scholar 

  78. 78.

    J.S. Jang, S.J. Choi, S.J. Kim, M. Hakim, I.D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016)

    CAS  Google Scholar 

  79. 79.

    G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 80(2), 125–131 (2001)

    CAS  Google Scholar 

  80. 80.

    S.J. Kim, S.J. Choi, J.S. Jang, N.H. Kim, M. Hakim, H.L. Tuller, I.D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)

    CAS  Google Scholar 

  81. 81.

    K.H. Kim, S.J. Kim, H.J. Cho, N.H. Kim, J.S. Jang, S.J. Choi, I.D. Kim, WO3 nanofibers functionalized by protein-templated RuO2 nanoparticles as highly sensitive exhaled breath gas sensing layers. Sens. Actuators B 241, 1276–1282 (2017)

    CAS  Google Scholar 

  82. 82.

    Y.J. Jeong, W.T. Koo, J.S. Jang, D.H. Kim, H.J. Cho, I.D. Kim, Chitosan-templated Pt nanocatalyst loaded mesoporous SnO2 nanofibers: a superior chemiresistor toward acetone molecules. Nanoscale 10(28), 13713–13721 (2018)

    CAS  Google Scholar 

  83. 83.

    Y. Li, X. Zhou, W. Luo, X. Cheng, Y. Zhu, A.M. El-Toni, A. Khan, Y. Deng, D. Zhao, Pore engineering of mesoporous tungsten oxides for ultrasensitive gas sensing. Adv. Mater. Interfaces 6(1), 1801269 (2019)

    Google Scholar 

  84. 84.

    V.K. Tomer, S. Duhan, Ordered mesoporous Ag-Doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J. Mater. Chem. A 4(3), 1033–1043 (2016)

    CAS  Google Scholar 

  85. 85.

    R. Malik, V.K. Tomer, L. Kienle, V. Chaudhary, S. Nehra, S. Duhan, Ordered mesoporous Ag–ZnO@ g-CN nanohybrid as highly efficient bifunctional sensing material. Adv. Mater. Interfaces 5(8), 1701357 (2018)

    Google Scholar 

  86. 86.

    P.M. Bulemo, H.J. Cho, D.H. Kim, I.D. Kim, Facile synthesis of Pt-functionalized meso/macroporous SnO2 hollow spheres through in situ templating with SiO2 for H2S sensors. ACS Appl. Mater. Interfaces. 10(21), 18183–18191 (2018)

    CAS  Google Scholar 

  87. 87.

    S.J. Choi, C. Choi, S.J. Kim, H.J. Cho, M. Hakim, S. Jeon, I.D. Kim, Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep. 5, 8067 (2015)

    CAS  Google Scholar 

  88. 88.

    T. Wang, I. Can, S. Zhang, J. He, P. Sun, F. Liu, G. Lu, Self-assembly template driven 3D inverse opal microspheres functionalized with catalyst nanoparticles enabling a highly efficient chemical sensing platform. ACS Appl. Mater. Interfaces. 10(6), 5835–5844 (2018)

    CAS  Google Scholar 

  89. 89.

    M.C. Chang, Three dimensionally ordered microstructure of polycrystalline TiO2 ceramics with micro/meso porosity. J. Korean Ceram. Soc. 53(2), 227–233 (2016)

    CAS  Google Scholar 

  90. 90.

    M.C. Chang, Three dimensionally ordered microstructure of polycrystalline zirconia ceramics with micro-porosity. J. Korean Ceram. Soc. 53(1), 50–55 (2016)

    CAS  Google Scholar 

  91. 91.

    P. Song, Q. Wang, Z. Yang, CO-sensing characteristics of La0.8Pb0.2Fe0.8Co0.2O3 perovskite films prepared by RF magnetron sputtering. Phys E (Amst. Neth.) 41(8), 1479–1483 (2009)

    CAS  Google Scholar 

  92. 92.

    L. Ma, S.Y. Ma, X.F. Shen, T.T. Wang, X.H. Jiang, Q. Chen, Z. Qiang, H.M. Yang, H. Chen, PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens. Actuators B 255, 2546–2554 (2018)

    CAS  Google Scholar 

  93. 93.

    D. Chen, J. Yi, One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers. J. Nanopart. Res. 20(3), 65 (2018)

    Google Scholar 

  94. 94.

    Y. Zhang, Z. Duan, H. Zou, M. Ma, Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater. Lett. 215, 58–61 (2018)

    CAS  Google Scholar 

  95. 95.

    B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, G. Lu, Gas sensing with yolk-shell LafeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B 258, 1215–1222 (2018)

    CAS  Google Scholar 

  96. 96.

    Z. Dai, C.S. Lee, B.Y. Kim, C.H. Kwak, J.W. Yoon, H.M. Jeong, J.H. Lee, Honeycomb-like periodic porous LaFeO3 thin film chemiresistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces. 6(18), 16217–16226 (2014)

    CAS  Google Scholar 

  97. 97.

    M. Chen, H. Wang, J. Hu, Y. Zhang, K. Li, D. Zhang, S. Zhou, J. Zhang, Z. Zhu, Q. Liu, Near-room-temperature ethanol gas sensor based on mesoporous Ag/Zn–LaFeO3 nanocomposite. Adv. Mater. Interfaces 6(1), 1801453 (2019)

    Google Scholar 

  98. 98.

    P.M. Bulemo, H.J. Cho, N.H. Kim, I.D. Kim, Mesoporous SnO2 nanotubes via electrospinning-etching route: highly sensitive and selective detection of H2S molecule. ACS Appl. Mater. Interfaces. 9(31), 26304–26313 (2017)

    CAS  Google Scholar 

  99. 99.

    T. Zhou, T. Zhang, R. Zhang, Z. Lou, J. Deng, G. Lu, L. Wang, Constructing PN heterostructures for efficient structure-driven ethanol sensing performance. Sens. Actuators B 255, 745–753 (2018)

    CAS  Google Scholar 

  100. 100.

    P. Song, H. Zhang, D. Han, J. Li, Z. Yang, Q. Wang, Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sens. Actuators B 196, 140–146 (2014)

    CAS  Google Scholar 

  101. 101.

    W.M. Xu, K. Chai, Y.W. Jiang, J. Mao, J. Wang, P. Zhang, Y. Shi, 2D Single Crystal WSe2 and MoSe2 nanomeshes with quantifiable high exposure of layer edges from 3D mesoporous silica template. ACS Appl. Mater. Interfaces 11(19), 17670–17677 (2019)

    CAS  Google Scholar 

  102. 102.

    S.J. Choi, I.D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018)

    CAS  Google Scholar 

  103. 103.

    D. Zappa, V. Galstyan, N. Kaur, H. M. M. Arachchige, O. Sisman, E. Comini, “Metal oxide-based heterostructures for gas sensors”—a review. Anal. Chim. Acta. 1039, 1–23 (2018)

    CAS  Google Scholar 

  104. 104.

    M. Chen, Y. Zhang, J. Zhang, K. Li, T. Lv, K. Shen, Z. Zhu, Q. Liu, Facile lotus-leaf-templated synthesis and enhanced xylene gas sensing properties of Ag-LaFeO3 nanoparticles. J. Mater. Chem. C 6(23), 6138–6145 (2018)

    CAS  Google Scholar 

  105. 105.

    A. Bala, S. Majumder, M. Dewan, A.R. Chaudhuri, Hydrogen sensing characteristics of perovskite based calcium doped BiFeO3 thin films. Int J Hydrogen Energ 44(33), 18648–18656 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Trade, Industry and Energy (Korea) under the Industrial Technology Innovation Program (No. 10070075) and the National Research Foundation of Korea (NRF), Grant No. 2014R1A4A1003712 (BRL Program). This work was also supported by Wearable Platform Materials Technology Center (WMC) funded by National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) (No. 2016R1A5A1009926).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulemo, P.M., Kim, ID. Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24–39 (2020). https://doi.org/10.1007/s43207-019-00003-1

Download citation

Keywords

  • Perovskites
  • Sensors
  • Doping
  • Oxygen vacancies
  • Porosity