Skip to main content

Composites of silica aerogels with organics: a review of synthesis and mechanical properties

Abstract

Aerogels are considered as outstanding future materials owing to their wide surface area and three-dimensional network of silica particles, low density, low-thermal conductivity, high porosity, and low dielectric property. Their outstanding characteristics represent excellent potential applications in thermal insulation systems, aeronautical domains, environmental clean-up and protection, as heat storage devices, transparent windows, thickening agents in paints, etc. Among these applications, thermal insulating materials can play a vital role in living systems and for saving energy in various domestic and industrial processes. However, native silica aerogels are fragile and sensitive to relatively low pressures, which limit their application. More robust aerogels with higher strength and stiffness can be obtained by compounding silica networks with organoalkoxysilanes, polymers or using porous scaffolds as supports. This paper presents a review on the approaches for mechanical reinforcing methods for silica aerogels and recent achievements toward improving the strength of native silica aerogels. In addition, various characteristics derived from composite aerogels are analyzed synthetically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3
Fig. 6
Scheme 4
Fig. 7
Fig. 8
Scheme 5
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, N. Leventis, Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem. Mater. 20, 5035–5046 (2008)

    CAS  Google Scholar 

  2. 2.

    X. Hu, K. Littrel, S. Ji, D.G. Pickles, W.M. Risen, Characterization of silica-polymer aerogel composites by small-angle neutron scattering and transmission electron microscopy. J. Non-Cryst. Solids 288, 184–190 (2001)

    CAS  Google Scholar 

  3. 3.

    Z. Li, X. Cheng, S. He, D. Huang, H. Bi, H. Yang, Preparation of ambient pressure dried MTMS/TEOS Co-precursor silica aerogel by adjusting NH4OH concentration. Mater. Lett. 129, 12–15 (2014)

    CAS  Google Scholar 

  4. 4.

    N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)

    Google Scholar 

  5. 5.

    D. Ge, L. Yang, Y. Li, J. Zhao, Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J. Non-Cryst. Solids 355, 2610–2615 (2009)

    CAS  Google Scholar 

  6. 6.

    H.S. Yang, S.Y. Choi, S.H. Hyun, H.H. Park, J.K. Hong, Ambient-dried low dielectric SiO2 aerogel thin film. J. Non-Cryst. Solids 221(2-3), 151–156 (1997)

    CAS  Google Scholar 

  7. 7.

    M.H. Jo, J.K. Hong, H.H. Park, J.J. Kim, S.H. Hyun, S.Y. Choi, Application of SiO2 aerogel film with low dielectric constant to intermetal dielectrics. Thin Solid Films 308, 490–494 (1997)

    Google Scholar 

  8. 8.

    N. Kuthirummal, A. Dean, C. Yao, W. Risen, Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)–chitosan–silica aerogels. Spectrochim. Acta A 70, 700–703 (2008)

    Google Scholar 

  9. 9.

    J.T. Seo, S.M. Ma, Q. Yang, L. Creekmore, H. Brown, R. Battle, K. Lee, A. Jackson, T. Skyles, B. Tabibi, K.P. Yoo, S.Y. Kim, S.S. Jung, M. Namkung, Large optical nonlinearity of highly porous silica nanoaerogels in the nanosecond time domain. J. Korean Phys. Soc. 48, 1395–1399 (2006)

    CAS  Google Scholar 

  10. 10.

    S.H. Hyun, J.J. Kim, H.H. Park, Synthesis and characterization of low-dielectric silica aerogel films. J. Am. Ceram. Soc. 83(3), 533–540 (2000)

    CAS  Google Scholar 

  11. 11.

    J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interfaces 3(3), 613–626 (2011)

    CAS  Google Scholar 

  12. 12.

    N. Bheekhun, A. Talib, A. Rahim, M.R. Hassan, Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng. 2013, 1–18 (2013)

    Google Scholar 

  13. 13.

    I. Smirnova, P. Gurikov, Aerogel production: current status, research directions, and future opportunities. J. Supercrit. Fluid. 134, 228–233 (2018)

    CAS  Google Scholar 

  14. 14.

    M.F. Bertino, J.F. Hund, G. Zhang, C. Sotiriou-leventis, A.T. Tokuhiro, N. Leventis, Room temperature synthesis of noble metal clusters in the mesopores of mechanically strong silica-polymer aerogel composites. J. Sol-Gel. Sci. Technol. 30, 43–48 (2004)

    CAS  Google Scholar 

  15. 15.

    K.Y. Lee, H.N.R. Jung, D.B. Mahadik, H.H. Park, Characterization of mechanical property change in polymer aerogels depending on the ligand structure of acrylate monomer. J. Microelectron. Packag. Soc. 23, 1–6 (2016)

    Google Scholar 

  16. 16.

    J. Kim, J.H. Lim, Organic-inorganic hybrid thermoelectric material synthesis and properties. J. Korean Ceram. Soc. 54, 272–277 (2017)

    CAS  Google Scholar 

  17. 17.

    D.B. Mahadik, A.V. Rao, R. Kumar, S.V. Ingale, P.B. Wagh, S.C. Gupta, Reduction of processing time by mechanical shaking of the ambient pressure dried TEOS based silica aerogel granules. J. Porous Mater. 19, 87–94 (2012)

    CAS  Google Scholar 

  18. 18.

    J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L. Zhang, Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed. 51(9), 2076–2079 (2012)

    CAS  Google Scholar 

  19. 19.

    M. Shi, C. Tang, X. Yang, J. Zhou, F. Jia, Y. Han, Z. Li, Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv. 7(7), 4039–4045 (2017)

    CAS  Google Scholar 

  20. 20.

    T.Y. Wei, S.Y. Lu, Y.C. Chang, Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. J. Phys. Chem. B 112(38), 11881–11886 (2008)

    CAS  Google Scholar 

  21. 21.

    D.B. Mahadik, W. Han, H.H. Cho, H.H. Park, Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 147, 45–51 (2017)

    CAS  Google Scholar 

  22. 22.

    H. Choi, V.G. Parale, K.Y. Lee, H.Y. Nah, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, H.H. Park, Polypropylene/silica aerogel composite incorporating a conformal coating of methyltrimethoxysilane-based aerogel. J. Nanosci. Nanotechnol. 19(3), 1376–1381 (2019)

    CAS  Google Scholar 

  23. 23.

    D.J. Boday, B. Muriithi, R.J. Stover, D.A. Loy, Polyaniline nanofiber-silica composite aerogels. J. Non-Cryst. Solids 358(12-13), 1575–1580 (2012)

    CAS  Google Scholar 

  24. 24.

    Z. Li, X. Cheng, S. He, X. Shi, L. Gong, H. Zhang, Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. Part A Appl. Sci. Manuf. 84, 316–325 (2016)

    CAS  Google Scholar 

  25. 25.

    X. Wang, S.C. Jana, Synergistic hybrid organic–inorganic aerogels. ACS Appl. Mater. Interfaces 5(13), 6423–6429 (2013)

    CAS  Google Scholar 

  26. 26.

    H. Maleki, L. Duraes, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 385, 55–74 (2014)

    CAS  Google Scholar 

  27. 27.

    D.B. Mahadik, A.V. Rao, V.G. Parale, M.S. Kavale, P.B. Wagh, S.V. Ingale, S.C. Gupta, Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 99, 104104 (2011)

    Google Scholar 

  28. 28.

    D.B. Mahadik, A.V. Rao, A.P. Rao, P.B. Wagh, S.V. Ingale, S.C. Gupta, Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. J. Colloid Interface Sci. 356, 298–302 (2011)

    CAS  Google Scholar 

  29. 29.

    H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)

    CAS  Google Scholar 

  30. 30.

    E. Barrios, D. Fox, Y.Y.L. Sip, R. Catarata, J.E. Calderon, N. Azim, S. Afrin, Z. Zhang, L. Zhai, Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11(726), 1–41 (2019)

    Google Scholar 

  31. 31.

    H.N.R. Jung, Y.K. Lee, V.G. Parale, H.H. Cho, D.B. Mahadik, H.H. Park, Hydrophobic silica composite aerogels using poly(methyl methacrylate) by rapid supercritical extraction process. J. Sol–Gel Sci. Technol. 83(3), 692–697 (2017)

    CAS  Google Scholar 

  32. 32.

    Y.G. Kim, H.S. Kim, S.M. Jo, S.Y. Kim, B.J. Yang, J. Cho, S. Lee, J.E. Cha, Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels. Chem. Eng. J. 351, 473–481 (2018)

    CAS  Google Scholar 

  33. 33.

    D.B. Mahadik, K.Y. Lee, R.V. Ghorpade, H.H. Park, Superhydrophobic and compressible silica-polyHIPE covalently bonded porous networks via emulsion templating for oil spill cleanup and recovery. Sci. Rep. 8(1), 16783 (2018)

    CAS  Google Scholar 

  34. 34.

    E.J.A. Pope, M. Asami, J.D. Mackenzie, Transparent silica gel–PMMA composites. J. Mater. Res. 4(4), 1018–1026 (1989)

    CAS  Google Scholar 

  35. 35.

    J.P. Randall, M.A.B. Meador, S.C. Jana, Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis(trimethoxysilylpropyl)amine as silane precursors. J. Mater. Chem. A 1, 6642–6652 (2013)

    CAS  Google Scholar 

  36. 36.

    A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102(11), 4243–4266 (2002)

    CAS  Google Scholar 

  37. 37.

    D.B. Mahadik, R.V. Lakshmi, H.C. Barshilia, High performance single layer nano-porous antireflection coatings on glass by sol–gel process for solar energy applications. Sol. Energy Mater. Sol. Cells 140, 61–68 (2015)

    CAS  Google Scholar 

  38. 38.

    N. Leventis, C.S. Leventis, G. Zhang, A.M.M. Rawashdeh, Nanoengineering strong silica aerogels. Nano Lett. 2(9), 957–960 (2002)

    CAS  Google Scholar 

  39. 39.

    Q. Li, M. Afeworki, N.M. Callen, R.J. Colby, M. Gopinadhan, M.L.N. Kochersperger, B.K. Peterson, M. Sansone, S.C. Weston, D.C. Calabro, Template-free self-assembly of mesoporous organosilicas. Chem. Mater. 30, 2218–2228 (2018)

    CAS  Google Scholar 

  40. 40.

    D.A. Loy, K.J. Shea, Bridged olysilsesquioxanes. highly porous hybrid organic-inorganic materials. Chem. Rev. 95, 1431–1442 (1995)

    CAS  Google Scholar 

  41. 41.

    K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada, New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007)

    CAS  Google Scholar 

  42. 42.

    W.J. Malfait, S. Zhao, R. Verel, S. Iswar, D. Rentsch, R. Fener, Y. Zhang, B. Milow, M.M. Koebel, Surface chemistry of hydrophobic silica aerogels. Chem. Mater. 27(19), 6737–6745 (2015)

    CAS  Google Scholar 

  43. 43.

    L. Li, T. Hu, Y. Yang, J. Zhang, Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes. J. Colloid Interface Sci. 540, 554–562 (2019)

    CAS  Google Scholar 

  44. 44.

    A. Katti, N. Shimpi, S. Roy, H. Lu, E.F. Fabrizio, A. Dass, L.A. Capadona, N. Leventis, Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem. Mater. 18, 285–296 (2006)

    CAS  Google Scholar 

  45. 45.

    M.A.B. Meador, L.A. Capadona, L. McCorkle, D.S. Papadopoulos, N. Leventis, Structure-property relationships in porous 3d nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels. Chem. Mater. 19, 2247–2260 (2007)

    CAS  Google Scholar 

  46. 46.

    M.A.B. Meador, C.M. Scherzer, S.L. Vivod, D. Quade, B.N. Nguyen, Epoxy reinforced aerogels made using a streamlined process. ACS Appl. Mater. Interfaces 2(7), 2162–2168 (2010)

    CAS  Google Scholar 

  47. 47.

    B.N. Nguyen, M.A.B. Meador, M.E. Tousley, B. Shonkwiler, L. McCorkle, D.A. Scheiman, A. Palczer, Tailoring elastic properties of silica aerogels cross-linked with polystyrene. ACS Appl. Mater. Interfaces 1(3), 621–630 (2009)

    CAS  Google Scholar 

  48. 48.

    D.J. Boday, R.J. Stover, B. Muriithi, M.W. Keller, J.T. Wertz, K.A.D. Obrey, D.A. Loy, Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl. Mater. Interfaces 1(7), 1364–1369 (2009)

    CAS  Google Scholar 

  49. 49.

    S. Yun, H. Luo, Y. Gao, Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2, 14542–14549 (2014)

    CAS  Google Scholar 

  50. 50.

    X. Wang, S.C. Jana, Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels. Langmuir 29, 5589–5598 (2013)

    CAS  Google Scholar 

  51. 51.

    H. Maleki, L. Duraes, A. Portugal, Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater. 197, 116–129 (2014)

    CAS  Google Scholar 

  52. 52.

    K. Khezri, Y. Fazli, ATRP of methyl methacrylate in the presence of HMDS-modified silica aerogel: ARGET approach. J. Inorg. Organomet. Polym. Mater. 29, 608–616 (2019)

    CAS  Google Scholar 

  53. 53.

    H. Guo, M.A.B. Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton, M. Cakmak, G. Sprowl, Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3, 546–552 (2011)

    CAS  Google Scholar 

  54. 54.

    W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu, Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 173, 47–52 (2019)

    CAS  Google Scholar 

  55. 55.

    K. Matyjaszewski, Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10), 4015–4039 (2012)

    CAS  Google Scholar 

  56. 56.

    D.B. Mahadik, Y.K. Lee, T.H. Kim, W. Han, H.H. Park, Structural and electrochemical properties of SnO2-carbon composite aerogels for Li-ion battery anode material. Solid State Ion. 327, 76–82 (2018)

    CAS  Google Scholar 

  57. 57.

    N. Leventis, Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc. Chem. Res. 40(9), 874–884 (2007)

    CAS  Google Scholar 

  58. 58.

    D.B. Mahadik, S. Gujjar, G.M. Gouda, H.C. Barshilia, Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system. Appl. Surf. Sci. 299, 6–11 (2014)

    CAS  Google Scholar 

  59. 59.

    V.G. Parale, K.Y. Lee, H.H. Park, Flexible and transparent silica aerogel: an overview. J. Korean Ceram. Soc. 54(3), 184–199 (2017)

    CAS  Google Scholar 

  60. 60.

    H.Y. Nah, V.G. Parale, K.Y. Lee, H. Choi, T. Kim, C.H. Lim, J.Y. Seo, Y.S. Ku, J.W. Park, Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent. J. Sol–Gel Sci. Technol. 87(2), 319–330 (2018)

    CAS  Google Scholar 

  61. 61.

    V.G. Parale, H.N.R. Jung, W. Han, K.Y. Lee, D.B. Mahadik, H.H. Cho, H.H. Park, Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels. J. Alloys Compd. 727, 871–878 (2017)

    CAS  Google Scholar 

  62. 62.

    G.M. Pajonk, Some applications of silica aerogels. Colloid Polym. Sci. 281(7), 637–651 (2003)

    CAS  Google Scholar 

  63. 63.

    V.G. Parale, W. Han, H.N.R. Jung, K.Y. Lee, H.H. Park, Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area. Solid State Sci. 75, 63–70 (2018)

    CAS  Google Scholar 

  64. 64.

    V.G. Parale, D.B. Mahadik, M.S. Kavale, A.V. Rao, R.A. Patil, Y.R. Ma, S. Mullens, R.S. Vhatkar, Effect of aluminum and copper acetylacetonate on physico-chemical properties of tetraethoxysilane based silica aerogels. J. Porous Mater. 20(3), 563–570 (2013)

    CAS  Google Scholar 

  65. 65.

    A.V. Rao, M.M. Kulkarni, Hydrophobic properties of TMOS/TMES-based silica aerogels. Mater. Res. Bull. 37(9), 1667–1677 (2002)

    CAS  Google Scholar 

  66. 66.

    J.L. Gurav, A.V. Rao, D.Y. Nadargi, H.H. Park, Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids. J. Mater. Sci. 45(2), 503–510 (2010)

    CAS  Google Scholar 

  67. 67.

    M.F. Bertino, J.F. Hund, J. Sosa, G. Zhang, C. Sotiriou-Leventis, N. Leventis, A.T. Tokuhiro, J. Terry, High resolution patterning of silica aerogels. J. Non-Cryst. Solids 333(1), 108–110 (2004)

    CAS  Google Scholar 

  68. 68.

    H. Budunoglu, A. Yildlrim, M.O. Guler, M. Bayindir, Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl. Mater. Interfaces 3(2), 539–545 (2011)

    CAS  Google Scholar 

  69. 69.

    X. Zhang, W. Su, M. Lin, X. Miao, L. Ye, W. Yang, B. Jiang, Non-supercritical drying sol–gel preparation of superhydrophobic aerogel ORMOSIL thin films with controlled refractive index. J. Sol–Gel Sci. Technol. 74(3), 594–602 (2015)

    CAS  Google Scholar 

  70. 70.

    S.A. Mahadik, F. Pedraza, V.G. Parale, H.H. Park, Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J. Non-Crst. Solid 453, 164–171 (2016)

    CAS  Google Scholar 

  71. 71.

    P. Maximiano, L. Duraes, P.N. Simoes, Organically-modified silica aerogels: a density functional theory study. J. Supercrit. Fluids 147, 138–148 (2019)

    CAS  Google Scholar 

  72. 72.

    J.P. Vareda, T. Matias, L. Duraes, Facile preparation of ambient pressure dried aerogel-like monoliths with reduced shrinkage based on vinyl-modified silica networks. Ceram. Int. 44(14), 17453–17458 (2018)

    CAS  Google Scholar 

  73. 73.

    V.G. Parale, K.Y. Lee, H.N.R. Jung, H.Y. Nah, H. Choi, T.H. Kim, V.D. Phadtare, H.H. Park, Facile synthesis of hydrophobic, thermally stable, and insulative organically modified silica aerogels using co-precursor method. Ceram. Int. 44, 3966–3972 (2018)

    CAS  Google Scholar 

  74. 74.

    R. Scotti, L. Wahba, M. Crippa, M. D’Arienzo, R. Donetti, N. Santo, F. Morazzoni, Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8, 2131–2143 (2012)

    CAS  Google Scholar 

  75. 75.

    J.B. Jun, J.K. Hong, J.G. Park, K.D. Suh, Preparation of monodisperse crosslinked organic–inorganic hybrid copolymer particles by dispersion polymerization. Macromol. Chem. Phys. 204(18), 2281–2289 (2003)

    CAS  Google Scholar 

  76. 76.

    L. Martin, J.O. Osso, S. Ricart, A. Roig, O. Garcia, R. Sastre, Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J. Mater. Chem. 18(2), 207–213 (2008)

    CAS  Google Scholar 

  77. 77.

    G. Gayase, K. Kugimiya, M. Ogawa, Y. Kodera, K. Kanamori, K. Nakanishi, The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J. Mater. Chem. A 2, 6525–6531 (2014)

    Google Scholar 

  78. 78.

    T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C.M. Doherty, P. Falcaro, K. Nakanishi, Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem. Mater. 28(19), 6860–6868 (2016)

    CAS  Google Scholar 

  79. 79.

    T. Shimizu, K. Kanamori, K. Nakanishi, Silicone based organic-inorganic aerogels and xerogels. Chem. Eur. J. 23(22), 5176–5187 (2017)

    CAS  Google Scholar 

  80. 80.

    V.G. Parale, D.B. Mahadik, S.A. Mahadik, M.S. Kavale, A.V. Rao, P.B. Wagh, Wettability study of surface modified silica aerogels with different silylating agents. J. Sol–Gel Sci. Technol. 63(3), 573–579 (2012)

    CAS  Google Scholar 

  81. 81.

    A. Hilonga, J.K. Kim, P.B. Sarawade, H.T. Kim, Low-density TEOS-based silica aerogels prepared at ambient pressure using isopropanol as the preparative solvent. J. Alloys Compd. 487(1-2), 744–750 (2009)

    CAS  Google Scholar 

  82. 82.

    C.R. Ehgartner, S. Grandi, A. Feinle, N. Husing, Flexible organofunctional aerogels. Dalton Trans. 46, 8809–8817 (2017)

    CAS  Google Scholar 

  83. 83.

    T. Matias, C. Varino, H.C. de Sousa, M.E.M. Braga, A. Portugal, J.F.J. Coelho, L. Duraes, Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure. J. Mater. Sci. 51(14), 6781–6792 (2016)

    CAS  Google Scholar 

  84. 84.

    P. Shajesh, S. Smitha, P.R. Aravind, K.G.K. Warrier, Effect of 3-glycidoxypropyl trimethoxysilane precursor on the properties of ambient pressure dried silica aerogels. J. Sol–Gel Sci. Technol. 50, 353–358 (2009)

    CAS  Google Scholar 

  85. 85.

    P. Innocenzi, G. Brusatin, M. Guglielmi, R. Bertani, New synthetic route to (3-glycidoxypropyl)trimethoxysilane-based hybrid organic − inorganic materials. Chem. Mater. 11(7), 1672–1679 (1999)

    CAS  Google Scholar 

  86. 86.

    H. Abdollahi, A. Ershad-Langroudi, A. Salimi, A. Rahimi, Anticorrosive coatings prepared using epoxy − silica hybrid nanocomposite materials. Ind. Eng. Chem. Res. 53, 10858–10869 (2014)

    CAS  Google Scholar 

  87. 87.

    P.R. Aravind, P. Niemyer, L. Ratke, Novel flexible aerogels derived from methyltrimethoxysilane/3-(2,3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous Mesoporous Mater. 181, 111–115 (2013)

    CAS  Google Scholar 

  88. 88.

    V.S. Smitha, P.M.A. Azeez, K.G.K. Warrier, B.N. Nair, U.N.S. Hareesh, Transparent and hydrophobic MTMS/GPTMS hybrid aerogel monoliths and coatings by sol–gel method: a viable remedy for oil-spill cleanup. ChemistrySelect 3, 2989–2997 (2018)

    CAS  Google Scholar 

  89. 89.

    Z. Wu, L. Zhang, J. Li, X. Zhao, C. Yang, Organic–inorganic hybridization for the synthesis of robust in situ hydrophobic polypropylsilsesquioxane aerogels with fast oil absorption properties. RSC Adv. 8, 5695–5701 (2018)

    CAS  Google Scholar 

  90. 90.

    G. Hayase, K. Kanamori, K. Kazuki, T. Hanada, Synthesis of new flexible aerogels from MTMS/DMDMS via ambient pressure drying. IOP Conf. Ser. Mater. Sci. Eng. 18, 032013 (2011)

    Google Scholar 

  91. 91.

    Y. Duan, S.C. Jana, A.M. Reinsel, B. Lama, M.P. Espe, Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28, 15362–15371 (2012)

    CAS  Google Scholar 

  92. 92.

    W. Zhang, G. Camino, R. Yang, Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog. Polym. Sci. 67, 77–125 (2017)

    Google Scholar 

  93. 93.

    F. He, L. Zhou, M. Fang, C. Sui, W. Li, L. Yang, M. Li, X. He, Fabrication and simulation analysis of flexible polymethylsilsesquioxane (PMSQ) aerogels by using dimethyl sulfoxide (DMSO) as solvent. Mater. Des. 173, 107777 (2019)

    Google Scholar 

  94. 94.

    K. Kanamori, R. Ueoka, T. Kakegawa, T. Shimizu, K. Nakanishi, Hybrid silicone aerogels toward unusual flexibility, functionality, and extended applications. J. Sol–Gel Sci. Technol. 89, 166–175 (2019)

    CAS  Google Scholar 

  95. 95.

    T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C.M. Doherty, K. Nakanishi, Transparent ethenylene-bridged polymethylsiloxane aerogels: mechanical flexibility and strength and availability for addition reaction. Langmuir 33(18), 4543–4550 (2017)

    CAS  Google Scholar 

  96. 96.

    G. Zu, T. Shimizu, K. Kananmori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12, 521–532 (2018)

    CAS  Google Scholar 

  97. 97.

    G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno, H. Kaji, K. Nakanishi, J. Shen, Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem. Mater. 30, 2759–2770 (2018)

    CAS  Google Scholar 

  98. 98.

    N. Husing, F. Schwertfeger, W. Tappert, U. Schubert, Influence of supercritical drying fluid on structure and properties of organically modified silica aerogels. J. Non-Cryst. Solid 186, 37–43 (1995)

    Google Scholar 

  99. 99.

    D.B. Mahadik, Y.K. Lee, N.K. Chavan, S.A. Mahadik, H.H. Park, Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process. J. Supercrit. Fluids 107, 84–91 (2016)

    CAS  Google Scholar 

  100. 100.

    N.D. Hegde, A.V. Rao, Organic modification of TEOS based silica aerogels using hexadecyltrimethoxysilane as a hydrophobic reagent. Appl. Surf. Sci. 253, 1566–1572 (2006)

    CAS  Google Scholar 

  101. 101.

    N. Husing, U. Schubert, Organofunctional silica aerogels. J. Sol–Gel Sci. Technol. 8, 807–812 (1997)

    CAS  Google Scholar 

  102. 102.

    Z.D. Shao, X. Cheng, Y.M. Zheng, Facile co-precursor sol–gel synthesis of a novel amine-modified silica aerogel for high efficiency carbon dioxide capture. J. Colloid Interface Sci. 530, 412–423 (2018)

    CAS  Google Scholar 

  103. 103.

    S. Standeker, Z. Novak, Z. Knez, Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J. Colloid Interface Sci. 310, 362–368 (2007)

    CAS  Google Scholar 

  104. 104.

    R. Al-Oweini, H. El-Rassy, Surface characterization by nitrogen adsorption of silica aerogels synthesized from various Si(OR)4 and R”Si(OR’)3 precursors. Appl. Surf. Sci. 257, 276–281 (2010)

    CAS  Google Scholar 

  105. 105.

    D. Chen, H. Gao, Z. Jin, J. Wang, W. Dong, X. Huang, G. Wang, Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: effects of acid catalyst and its excellent flexibility. ACS Appl. Nano Mater. 1, 933–939 (2018)

    CAS  Google Scholar 

  106. 106.

    C. Lei, J. Li, C. Sun, H. Yang, T. Xia, Z. Hu, Y. Zhang, Transparent, elastic and crack-free polymethylsilsesquioxane aerogels prepared by controllable shrinkage of the hydrogels in the aging process. Microporous Mesoporous Mater. 267, 107–114 (2018)

    CAS  Google Scholar 

  107. 107.

    C. Lei, J. Li, C. Sun, H. Yang, T. Xia, Z. Hu, Y. Zhang, A co-precursor approach coupled with a supercritical modification method for constructing highly transparent and superhydrophobic polymethylsilsesquioxane aerogels. Molecules 23(4), 797 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-TA1703-04.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung-Ho Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, KY., Mahadik, D.B., Parale, V.G. et al. Composites of silica aerogels with organics: a review of synthesis and mechanical properties. J. Korean Ceram. Soc. 57, 1–23 (2020). https://doi.org/10.1007/s43207-019-00002-2

Download citation

Keywords

  • Organic–inorganic
  • Aerogel
  • Organic cross linker
  • Composites
  • Mechanical strength