Skip to main content

Advertisement

Log in

Navigation und Robotik

Aktuelle Evidenz und Ausblick

Navigation and robotics

Current evidence and future

  • Leitthema
  • Published:
Knie Journal Aims and scope

Zusammenfassung

Die Implantation einer Knietotalendoprothese lag im Jahr 2020 an Stelle 14 der 20 am häufigsten durchgeführten operativen Eingriffe in Deutschland. Somit ist die Implantation einer Knieendoprothese als Routineeingriff einzustufen. Trotz der hohen Implantationszahlen ist der klinische Erfolg des bikondylären Oberflächenersatzes mit einer Rate von 15–17 % unzufriedener Patienten optimierbar. Daher kommt der Verbesserung des Outcomes, der Standzeiten von Implantaten und der stetigen Verbesserung von Operationstechniken eine gleichbleibend wichtige Bedeutung zu. Optionen zur Verbesserung der Implantatpositionierung und damit auch zur Ausrichtung der Beinachse mit Einfluss auf das klinische Ergebnis und die Haltbarkeit des Implantates können hierbei die Verwendung von Assistenzsystemen wie Navigation und Robotik sein. Es existieren kontroverse Daten, ob Implantationen unter Nutzung verschiedener Assistenzsysteme neben der erhöhten Implantationspräzision zu einer Verbesserung des klinischen Outcomes, der Überlebensrate und der Patientenzufriedenheit führen. Zudem zeigt sich eine Inhomogenität in der Evidenz zu den unterschiedlichen Assistenzsystemen. Trotz der teils kontroversen und inhomogenen Datenlage erlauben Metaanalysen zumindest eine Nutzenabschätzung der unterschiedlichen Assistenzsysteme zur Implantation von Knietotalendoprothesen.

Abstract

Total knee arthroplasty ranked 14th among the 20 most frequently performed surgical procedures in Germany in 2020. Thus, the implantation of a knee endoprosthesis can be classified as a routine procedure. Despite the high implantation numbers, the clinical success of bicondylar knee arthroplasty can be optimized as 15–17% of patients are dissatisfied. Therefore, the improvement of outcome, implant longevity, and the continuous improvement of surgical techniques are important. The use of assistance systems, e.g., navigation and robotics, improve implant positioning and thus alignment of the leg axis, which influence the clinical outcome and implant longevity. Data whether implantations using different assistance systems lead to an improvement of clinical outcome, survival rate, patient satisfaction, and increased implantation precision are controversially discussed. The evidence regarding the different assistance systems is also heterogeneous. Despite the partly controversial and inhomogeneous data situation, meta-analyses allow assessment of the benefit of the different assistance systems for total knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Endoprothesenregister Deutschland (2021) Jahresbericht 2021

    Google Scholar 

  2. Endoprothesenregister Deutschland (EPRD) Teilnehmende Kliniken

  3. Destatis (2021) Die 20 häufigsten Operationen insgesamt (OPS5). Vollstationär behandelte Patienten und Patientinnen in Krankenhäusern 2020

    Google Scholar 

  4. Schulze A, Scharf HP (2013) Zufriedenheit nach Knietotalendoprothesenimplantation. Vergleich 1990-1999 mit 2000-2012. Orthopade 42(10):858–865. https://doi.org/10.1007/s00132-013-2117-x

    Article  PubMed  CAS  Google Scholar 

  5. Siddiqi A, Horan T, Molloy RM, Bloomfield MR, Patel PD, Piuzzi NS (2021) A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev 6(4):252–269. https://doi.org/10.1302/2058-5241.6.200071

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pubmed Library suchanfrage von 2/2022

  7. Leitner F, Picard F, Minfelde R, Schulz H‑J, Cinquin P, Saragaglia D (1997) Computer assisted knee surgical total replacement. In: Troccaz J, Grimson E, Mösges R (Hrsg) CVRMedMRCAS ’97: First Joint Conference Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and ComputerAssisted Surgery. Springer, Grenoble

    Google Scholar 

  8. Quack VM, Kathrein S, Rath B, Tingart M, Lüring C (2012) Computer-assisted navigation in total knee arthroplasty: a review of literature. Biomed Tech Biomed Eng 57(4):269–275. https://doi.org/10.1515/bmt-2011-0096

    Article  Google Scholar 

  9. Lionberger DR (2007) The attraction of electromagnetic computer-assisted navigation in orthopaedic surgery. In: Stiehl JB, Konermann WH, Haaker RG, DiGioia AM (Hrsg) Navigation and MIS in orthopaedic surgery. Springer, Heidelberg

    Google Scholar 

  10. Stulberg DD, Picard F, Saragaglia D (2000) Computer-assisted total knee replacement arthroplasty. Oper Tech Orthop 10:25–39

    Article  Google Scholar 

  11. Lionberger DR, Weise J, Ho DM, Haddad JL (2008) How does electromagnetic navigation stack up against infrared navigation in minimally invasive total knee arthroplasties? J Arthroplasty 23:573–580

    Article  Google Scholar 

  12. Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 241:129–140

    Article  Google Scholar 

  13. Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the ROBODOC® system. Clin Orthop Relat Res 354:82–91

    Article  Google Scholar 

  14. Picard F, Moody J, DiGioia AM III, Jaramaz B (2004) Clinical classifications of CAOS systems. In: DiGioia AM III, Jaramaz B, Picard F, Nolte LP (Hrsg) Computer and robotic assisted hip and knee surgery. Oxford University Press, New York, S 43–48

    Google Scholar 

  15. Siddiqi A, Hardaker WM, Eachempati KK, Sheth NP (2017) Advances in computer-aided technology for total knee arthroplasty. Orthopedics. https://doi.org/10.3928/01477447-20170831-02

    Article  PubMed  Google Scholar 

  16. Lee B‑S, Cho H‑I, Bin S‑I, Kim J‑M, Jo B‑K (2018) Femoral component varus malposition is associated with tibial aseptic loosening after TKA. Clin Orthop Relat Res 476:400–407

    Article  Google Scholar 

  17. McClelland JA, Webster KE, Ramteke AA, Feller JA (2017) Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery. Knee 24:651–656

    Article  Google Scholar 

  18. Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg Am 84(2):90–98

    Article  Google Scholar 

  19. Lee DY, Park YJ, Hwang SC, Park JS, Kang DG (2020) No differences in mid- to long-term outcomes of computer-assisted navigation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28(10):3183–3192. https://doi.org/10.1007/s00167-019-05808-5

    Article  PubMed  Google Scholar 

  20. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22:1097–1106

    Article  Google Scholar 

  21. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89:236–243

    Article  Google Scholar 

  22. Tandogan RN, Kort NP, Ercin E, van Rooij F, Nover L, Saffarini M, Hirschmann MT, Becker R, Dejour D, European Knee Associates (EKA) (2021) Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06495-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lei K, Liu L, Chen X, Feng Q, Yang L, Guo L (2022) Navigation and robotics improved alignment compared with PSI and conventional instrument, while clinical outcomes were similar in TKA: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc 30(2):721–733. https://doi.org/10.1007/s00167-021-06436-8

    Article  PubMed  Google Scholar 

  24. Kim Y‑H, Yoon S‑H, Park J‑W (2020) Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial. Clin Orthop Relat Res 478:266–275

    Article  Google Scholar 

  25. Lee D‑Y, Park Y‑J, Hwang S‑C, Park J‑S, Kang D‑G (2020) No differences in mid- to long-term outcomes of computer-assisted navigation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28:3183–3192

    Article  Google Scholar 

  26. Agarwal N, To K, McDonnell S, Khan W (2020) Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 35(11):3393–3409.e2

    Article  Google Scholar 

  27. Chin BZ, Tan SSH, Chua KCX, Budiono GR, Syn NL, O’Neill GK (2020) Robot-assisted versus conventional total and unicompartmental knee arthroplasty: a meta-analysis of radiological and functional outcome. J Knee Surg. https://doi.org/10.1055/s-0040-1701440

    Article  PubMed  Google Scholar 

  28. Yang HY, Seon JK, Shin YJ, Lim HA, Song EK (2017) Robotic total knee arthroplasty with a cruciate-retaining implant: a 10-year follow-up study. Clin Orthop Surg 9:169–176

    Article  Google Scholar 

  29. Roberts TD, Frampton CM, Young SW (2020) Outcomes of computer-assisted surgery compared with conventional instrumentation in 19,221 total knee arthroplasties: results after a mean of 4.5 years of follow-up. J Bone Joint Surg Am 102:550–556

    Article  Google Scholar 

  30. de Steiger RN, Liu Y‑L, Graves SE (2015) Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am 97:635–642

    Article  Google Scholar 

  31. Antonios JK, Kang HP, Robertson D, Oakes DA, Lieberman JR, Heckmann ND (2020) Population-based survivorship of computer-navigated versus conventional total knee arthroplasty. J Am Acad Orthop Surg 28:857–864

    Article  Google Scholar 

  32. Weber P, Crispin A, Schmidutz F, Utzschneider S, Pietschmann MF, Jansson V, Müller PE (2013) Improved accuracy in computer-assisted unicondylar knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(11):2453–2461. https://doi.org/10.1007/s00167-013-2370-x

    Article  PubMed  Google Scholar 

  33. Xu K, Chen Q, Yan Q, Wang Q, Sun J (2022) Comparison of computer-assisted navigated technology and conventional technology in unicompartmental knee arthroplasty: a meta-analysis. J Orthop Surg Res 17(1):123. https://doi.org/10.1186/s13018-022-03013-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun Y, Liu W, Hou J, Hu X, Zhang W (2021) Does robotic-assisted unicompartmental knee arthroplasty have lower complication and revision rates than the conventional procedure? A systematic review and meta-analysis. BMJ Open 11(8):e44778. https://doi.org/10.1136/bmjopen-2020-044778

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang F, Li H, Ba Z, Bo C, Li K (2019) Robotic arm-assisted vs conventional unicompartmental knee arthroplasty: a meta-analysis of the effects on clinical outcomes. Medicine 98:e16968

    Article  CAS  Google Scholar 

  36. Gilmour A, MacLean AD, Rowe PJ, Banger MS, Donnelly I, Jones BG, Blyth MJG (2018) Robotic-arm-assisted vs conventional unicompartmental knee arthroplasty. The 2‑year clinical outcomes of a randomized controlled trial. J Arthroplasty 33:S109–S115

    Article  Google Scholar 

  37. Mergenthaler G, Batailler C, Lording T, Servien E, Lustig S (2021) Is robotic-assisted unicompartmental knee arthroplasty a safe procedure? A case control study. Knee Surg Sports Traumatol Arthrosc 29:931–938

    Article  Google Scholar 

  38. Park KK, Han CD, Yang I‑H, Lee W‑S, Han JH, Kwon HM (2019) Robot-assisted unicompartmental knee arthroplasty can reduce radiologic outliers compared to conventional techniques. PLoS ONE 14:e225941

    Article  CAS  Google Scholar 

  39. An diesen Kliniken in Deutschland gibt es einen Knie-Roboter im OP-Saal (klinikkompass.com)

  40. Hickey MD, Anglin C, Masri B, Hodgson AJ (2021) How large a study is needed to detect TKA revision rate reductions attributable to robotic or navigated technologies? A simulation-based power analysis. Clin Orthop Relat Res 479(11):2350–2361. https://doi.org/10.1097/CORR.0000000000001909

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kirschberg.

Ethics declarations

Interessenkonflikt

J. Kirschberg und G. Matziolis geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Rüdiger von Eisenhart-Rothe, München

Robert Hube, München

Wolf Petersen, Berlin

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirschberg, J., Matziolis, G. Navigation und Robotik. Knie J. 4, 237–242 (2022). https://doi.org/10.1007/s43205-022-00170-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43205-022-00170-y

Schlüsselwörter

Keywords

Navigation