Skip to main content
Log in

Prospektiv-randomisierte Studien vs. Register: Erkenntnisse für die Knorpelchirurgie am Kniegelenk

Prospective randomized clinical trials vs. registries: insights for knee cartilage repair

  • Leitthema
  • Published:
Knie Journal Aims and scope

Zusammenfassung

Prospektiv-randomisierte klinische Studien (RCTs) gelten für die Durchführung chirurgischer Studien als Goldstandard und stehen für das höchste Evidenzlevel in der Medizin. Bedingt auch durch die Notwendigkeit von Studien für die Zulassung autologer Zelltherapien liegt im Bereich der Knorpelchirurgie eine Vielzahl prospektiv-randomisierter Studien vor. Die Durchsicht und Analyse dieser Studien bringt viele wichtige Erkenntnisse. Dennoch zeigt die Datenlage, gerade im Bereich der Knorpelchirurgie, auch die Limitationen der alleinigen Analyse prospektiv-randomisierter Studien, die viele klinisch relevante Fragestellungen nicht beantworten können. Der vorliegende Artikel diskutiert und analysiert auf Basis der Evidenzlage im Bereich der knorpelregenerativen Therapie am Kniegelenk die Vor- und Nachteile prospektiv-randomisierter Studien im Vergleich zu longitudinalen Oberservationsstudien (z. B. klinische Behandlungsregister) und plädiert für eine Adaptation der Festlegung der Evidenzlevel in Abhängigkeit der konkreten Fragestellung. Grundlage für diesen Artikel stellen die Daten aus dem KnorpelRegister DGOU dar, welches im Oktober 2013 eingeführt wurde und mittlerweile mehr als 10.000 prospektiv erfasste Datensätze beinhaltet.

Abstract

Prospective randomized clinical trials (RCTs) are considered the highest standard of clinical research and represent clinical level 1 evidence. Due to regulatory issues, there are a large number of RCTs available for cartilage repair and autologous chondrocyte implantation which revealed interesting information and contributed significantly to the existing knowledge. Nevertheless, there are also significant limitations of RCTs and many questions which are important for everyday practice cannot be sufficiently be answered by them. The current paper discusses advantages and disadvantages of RCTs versus prospective observational studies such as registries in clinical research using the example of cartilage repair of the knee including data from the German Cartilage Registry (KnorpelRegister DGOU) which was initiated in 2013 and currently contains data of more than 10,000 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Concato J, Shah N, Horwitz RI (2000) Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 342:1887–1892. https://doi.org/10.1056/NEJM200006223422507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horas (2003) https://doi.org/10.2106/00004623-200302000-00001

  3. Schneider (2003) https://doi.org/10.1177/0363546511423369

  4. Bentley (2003) https://doi.org/10.1302/0301-620x.85b2.13543

  5. Visna (2004) https://doi.org/10.1080/00015458.2004.11679648

  6. Bartlett (2005) https://doi.org/10.1302/0301-620X.87B5.15905

  7. Dozin (2005) https://doi.org/10.1097/01.jsm.0000171882.66432.80

  8. Gooding (2006) https://doi.org/10.1016/j.knee.2006.02.011

  9. Knutsen (2004) https://doi.org/10.2106/00004623-200403000-00001

  10. Knutsen (2007) https://doi.org/10.2106/JBJS.G.00003

  11. Knutsen (2016) https://doi.org/10.2106/JBJS.15.01208

  12. Zeifang (2010) https://doi.org/10.1177/0363546509351499

  13. Basad (2010) https://doi.org/10.1007/s00167-009-1028-1

  14. Saris (2008) https://doi.org/10.1177/0363546507311095

  15. Saris (2009) https://doi.org/10.1177/0363546509350694

  16. VanLauwe (2012) https://doi.org/10.1177/1947603511430325

  17. Cole (2011)

  18. Spalding (2011)

  19. Lim (2012) https://doi.org/10.1007/s11999-012-2304-9

  20. Saris (2014) https://doi.org/10.1177/0363546514528093

  21. Akgun (2015) https://doi.org/10.1007/s00402-014-2136-z

  22. Clave (2016) https://doi.org/10.1002/jor.23152

  23. Niemeyer (2016) https://doi.org/10.1177/0363546516646092

  24. Niemeyer (2019) https://doi.org/10.1177/2325967119854442

  25. Basad E, Ishaque B, Bachmann G et al (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527. https://doi.org/10.1007/s00167-009-1028-1

    Article  PubMed  Google Scholar 

  26. Becher C, Laute V, Fickert S et al (2017) Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. J Orthop Surg Res. https://doi.org/10.1186/s13018-017-0570-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brittberg M, Recker D, Ilgenfritz J et al (2018) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 46:1343–1351. https://doi.org/10.1177/0363546518756976

    Article  PubMed  Google Scholar 

  28. Hoburg A, Niemeyer P, Laute V et al (2019) Matrix-associated autologous chondrocyte implantation with spheroid technology is superior to arthroscopic microfracture at 36 months regarding activities of daily living and sporting activities after treatment. Cartilage. https://doi.org/10.1177/1947603519897290

    Article  Google Scholar 

  29. Knutsen G, Drogset JO, Engebretsen L et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. J Bone Joint Surg 89:2105–2112

    Article  Google Scholar 

  30. Knutsen G, Drogset JO, Engebretsen L et al (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture. J Bone Joint Surg 98:1332–1339. https://doi.org/10.2106/JBJS.15.01208

    Article  PubMed  Google Scholar 

  31. Niemeyer P, Laute V, John T et al (2016) The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee. Am J Sports Med. https://doi.org/10.1177/0363546516646092

    Article  PubMed  Google Scholar 

  32. Saris D, Price A, Widuchowski W et al (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394. https://doi.org/10.1177/0363546514528093

    Article  PubMed  Google Scholar 

  33. Saris DBF, Vanlauwe J, Victor J et al (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19S. https://doi.org/10.1177/0363546509350694

    Article  PubMed  Google Scholar 

  34. Engen CN, Engebretsen L, Årøen A (2010) Knee cartilage defect patients enrolled in randomized controlled trials are not representative of patients in orthopedic practice. Cartilage 1:312–319. https://doi.org/10.1177/1947603510373917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foldager CB, Farr J, Gomoll AH (2015) Patients scheduled for chondrocyte implantation treatment with MACI have larger defects than those enrolled in clinical trials. Cartilage. https://doi.org/10.1177/1947603515622659

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kunz R (2008) Randomized trials and observational studies: still mostly similar results, still crucial differences. J Clin Epidemiol 61:207–208. https://doi.org/10.1016/j.jclinepi.2007.05.021

    Article  PubMed  Google Scholar 

  37. Yang W, Zilov A, Soewondo P et al (2010) Observational studies: going beyond the boundaries of randomized controlled trials. Diabetes Res Clin Pract 88(Suppl 1):S3–S9. https://doi.org/10.1016/S0168-8227(10)70002-4

    Article  PubMed  Google Scholar 

  38. Brittberg M, Recker D, Ilgenfritz J et al (2018) Matrix-applied characterized autologous cultured chondrocytes versus microfracture. Am J Sports Med. https://doi.org/10.1177/0363546518756976

    Article  PubMed  Google Scholar 

  39. Niemeyer P, Laute V, Zinser W et al (2019) A prospective, randomized, open-label, multicenter, phase III Noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus Arthroscopic Microfracture for cartilage defects o. Orthop J Sports Med. https://doi.org/10.1177/2325967119854442

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saris DBF, Vanlauwe J, Victor J et al (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation (CCI) results in better clinical outcome at 36 months in a randomized trial compared to Microfracture. Am J Sports Med 26:101–102. https://doi.org/10.1016/j.orthtr.2009.12.006

    Article  Google Scholar 

  41. Vanlauwe JJE, Claes T, van Assche D et al (2012) Characterized chondrocyte implantation in the patellofemoral joint: an up to 4‑year follow-up of a prospective cohort of 38 patients. Am J Sports Med 40:1799–1807. https://doi.org/10.1177/0363546512452712

    Article  PubMed  Google Scholar 

  42. Volz M, Schaumburger J, Frick H et al (2017) A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. International Orthopaedics (SICOT) 41:797–804. https://doi.org/10.1007/s00264-016-3391-0

    Article  Google Scholar 

  43. Ulstein S, Arøen A, Røtterud JH et al (2014) Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 22:1207–1215. https://doi.org/10.1007/s00167-014-2843-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Niemeyer P, Laute V, Zinser W et al (2020) Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05786-8

    Article  PubMed  Google Scholar 

  45. Wondrasch B, Zak L, Welsch GH, Marlovits S (2009) Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study. Am J Sports Med. https://doi.org/10.1177/0363546509351272

    Article  PubMed  Google Scholar 

  46. Ebert JR, Fallon M, Wood DJ, Janes GC (2021) An accelerated 6‑week return to full weight bearing after matrix-induced autologous chondrocyte implantation results in good clinical outcomes to 5 years post-surgery. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06422-6

    Article  PubMed  Google Scholar 

  47. Ebert JR, Robertson WB, Lloyd DG et al (2008) Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthr Cartil 16:1131–1140. https://doi.org/10.1016/j.joca .2008.03.010

    Article  CAS  Google Scholar 

  48. Niemeyer P, Becher C, Brucker P et al (2018) Stellenwert der matrixaugmentierten Knochenmarkstimulation in der Behandlung von Knorpelschäden des Kniegelenks: Konsensusempfehlungen der AG Klinische Geweberegeneration der DGOU. Z Orthop Unfall 156:513–532. https://doi.org/10.1055/a-0591-6457

    Article  PubMed  Google Scholar 

  49. Niemeyer P, Schweigler K, Grotejohann B et al (2015) Das KnorpelRegister DGOU zur Erfassung von Behandlungsergebnissen nach Knorpeloperationen: Erfahrungen nach 6 Monaten und erste epidemiologische Daten. Z Orthop Unfall 153(1):67–74. https://doi.org/10.1055/s-0034-1383222

    Article  CAS  PubMed  Google Scholar 

  50. Pestka JM, Luu NH, Südkamp NP et al (2018) Revision surgery after cartilage repair: data from the German cartilage registry (Knorpelregister DGOU). Orthop J Sports Med. https://doi.org/10.1177/2325967117752623

    Article  PubMed  PubMed Central  Google Scholar 

  51. Faber S, Zellner J, Angele P et al (2020) Decision making for concomitant high tibial osteotomy (HTO) in cartilage repair patients based on a nationwide cohort study of 4968 patients. Arch Orthop Trauma Surg 140:1437–1444. https://doi.org/10.1007/s00402-020-03476-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Faber S, Angele P, Zellner J et al (2020) Comparison of clinical outcome following cartilage repair for patients with underlying Varus deformity with or without additional high tibial osteotomy: a propensity score-matched study based on the German cartilage registry (Knorpelregister DGOU). Cartilage. https://doi.org/10.1177/1947603520982347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niemeyer.

Ethics declarations

Interessenkonflikt

P. Niemeyer und S. Faber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. Niemeyer, München

S. Schröter, Siegen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemeyer, P., Faber, S. Prospektiv-randomisierte Studien vs. Register: Erkenntnisse für die Knorpelchirurgie am Kniegelenk. Knie J. 3, 168–175 (2021). https://doi.org/10.1007/s43205-021-00113-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43205-021-00113-z

Schlüsselwörter

Keywords

Navigation