Skip to main content

Advertisement

Log in

Association between urinary arsenic concentration and genetic polymorphisms in Korean adults

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a human carcinogen widely distributed in the environment. This study evaluated the association between the urinary As concentration and single nucleotide polymorphisms (SNPs) in Korean adults to determine the genetic factors related to As concentration. The study included 496 participants for the genome-wide association study (GWAS) and 1483 participants for the candidate gene approach study. Participants were 19 years and older. The concentrations of total As (Tot As) and total As metabolites (Tmet As, the sum of inorganic As and their metabolites; arsenite, arsenate, monomethylarsonic, and dimethylarsinic acid) in the urine were analyzed. The GWAS identified four SNPs (rs1432523, rs3776006, rs11171747, and rs807573) associated with urinary Tot As and four SNPs (rs117605537, rs3776006, rs11171747, and rs148103384) significantly associated with urinary Tmet As concentration (P < 1 × 10–4). The candidate gene study identified two SNPs (PRDX2 rs10427027 and GLRX rs3822751) in genes related to the reduction reaction associated with urinary Tot As and Tmet As. This study suggests that genetic factors may play a role in regulating As metabolism in the human body, affecting both exposure levels and its potential health risks in the general Korean population, even at low exposure levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data supporting the findings of this article are available within the article and its supplementary information.

References

  1. Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, Osterloh JD (2009) Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003–2004. J Expo Sci Environ Epidemiol 19:59–68. https://doi.org/10.1038/jes.2008.32

    Article  CAS  PubMed  Google Scholar 

  2. ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry, Division of Toxicology, Atlanta

  3. WHO (2001) Arsenic and arsenic compounds. Environmental health criteria 224. World Health Organization, Geneva

  4. IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC Press, Lyon, France

  5. Schuhmacher-Wolz U, Dieter HH, Klein D, Schneider K (2009) Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects. Crit Rev Toxicol 39:271–298. https://doi.org/10.1080/10408440802291505

    Article  CAS  PubMed  Google Scholar 

  6. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, Goessler W, Pollak J, Silbergeld EK, Howard BV, Navas-Acien A (2013) Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med 159:649–659. https://doi.org/10.7326/0003-4819-159-10-201311190-00719

    Article  PubMed  PubMed Central  Google Scholar 

  7. National Research Council (NRC) (1999) Arsenic in drinking water. National Academy Press, Washington

    Google Scholar 

  8. Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198:243–252. https://doi.org/10.1016/j.taap.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  9. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2009) Scientific opinion on arsenic in food. EFSA J 7:1351. https://doi.org/10.2903/j.efsa.2009.1351

    Article  Google Scholar 

  10. Heinrich-Ramm R, Mindt-Prüfert S, Szadkowski D (2002) Arsenic species excretion after controlled seafood consumption. J Chromatogr B Analyt Technol Biomed Life Sci 778:263–273. https://doi.org/10.1016/S0378-4347(01)00443-1

    Article  CAS  PubMed  Google Scholar 

  11. Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387. https://doi.org/10.1016/j.envint.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed MK, Shaheen N, Islam MS, Habibullah-Al-Mamun M, Islam S, Islam MM, Kundu GK, Bhattacharjee L (2015) A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. Sci Total Environ 544:125–133. https://doi.org/10.1016/j.scitotenv.2015.11.133

    Article  CAS  PubMed  Google Scholar 

  13. Lee SG, Kang I, Seo MN, Lee JE, Eom SY, Hwang MS, Park KS, Choi BS, Kwon HJ, Hong YS, Kim H, Park JD (2022) Exposure levels and contributing factors of various arsenic species and their health effects on Korean adults. Arch Environ Contam Toxicol 82:391–402. https://doi.org/10.1007/s00244-022-00913-y

    Article  CAS  PubMed  Google Scholar 

  14. Petrick JS, Jagadish B, MashEA AHV (2001) Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656. https://doi.org/10.1021/tx000264z

    Article  CAS  PubMed  Google Scholar 

  15. Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110:767–771. https://doi.org/10.1289/ehp.110-1241242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burchiel SW, Lauer FT, Beswick EJ, Gandolfi AJ, Parvez F, Liu KJ, Hudson LG (2014) Differential susceptibility of human peripheral blood T cells to suppression by environmental levels of sodium arsenite and monomethylarsonous acid. PLoS One 9:e109192. https://doi.org/10.1371/journal.pone.0109192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vahter M, Concha G, Nermell B (2000) Factors influencing arsenic methylation in humans. J Trace Elem Exp Med 13:173–184. https://doi.org/10.1002/(SICI)1520-670X(2000)13:1%3c173::AID-JTRA18%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  18. Tseng CH (2009) A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol 235:338–350. https://doi.org/10.1016/j.taap.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  19. Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, Navas-Acien A, Parvez F, Chen Y, Gamble MV, Graziano JH, Pierce BL, Ahsan H (2016) Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol Biomarkers Prev 25:381–390. https://doi.org/10.1158/1055-9965.EPI-15-0718

    Article  CAS  PubMed  Google Scholar 

  20. Chung JS, Kalman DA, Moore LE, Kosnett MJ, Arroyo AP, Beeris M, Mazumder DN, Hernandez AL, Smith AH (2002) Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ Health Perspect 110:729–733. https://doi.org/10.1289/ehp.02110729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buchet JP, Lauwerys R (1987) Study of factors influencing the in vivo methylation of inorganic arsenic in rats. Toxicol Appl Pharmacol 91:65–74. https://doi.org/10.1016/0041-008x(87)90194-3

    Article  CAS  PubMed  Google Scholar 

  22. Marafante E, Vahter M (1984) The effect of methyltransferase inhibition on the metabolism of [74As]arseniteinmiceandrabbits. Chem Biol Interact 50:49–57. https://doi.org/10.1016/0009-2797(84)90131-5

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci 99:6053–6058. https://doi.org/10.1073/pnas.092131899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, Brutus RP, Rahaman R, Zaman MR, Parvez F, Ahmed A, Quasem I, Hore SK, Alam S, Islam T, Slavkovich V, Gamble MV, Yunus M, Rahman M, Baron JA, Graziano JH, Ahsan H (2012) Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 8:e1002522. https://doi.org/10.1371/journal.pgen.1002522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H (2019) A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 15:e1007984. https://doi.org/10.1371/journal.pgen.1007984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamayo LI, Kumarasinghe Y, Tong L, Balac O, Ahsan H, Gamble M, Pierce BL (2022) Inherited genetic effects on arsenic metabolism: a comparison of effects on arsenic species measured in urine and in blood. Environ Epidemiol 6:e230. https://doi.org/10.1097/EE9.0000000000000230

    Article  PubMed  PubMed Central  Google Scholar 

  27. Banerjee N, Nandy S, Kearns JK, Bandyopadhyay AK, Das JK, Majumder P, Basu S, Banerjee S, Sau TJ, States JC, Giri AK (2011) Polymorphisms in the TNF-α and IL10 gene promoters and risk of arsenic-induced skin lesions and other nondermatological health effects. Toxicol Sci 121:132–139. https://doi.org/10.1093/toxsci/kfr046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas MR (2012) A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett 210:100–106. https://doi.org/10.1016/j.toxlet.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin YC, Chen WJ, Huang CY, Shiue HS, Su CT, Ao PL, Pu YS, Hsueh YM (2018) Polymorphisms of arsenic (+3 oxidation state) methyltransferase and arsenic methylation capacity affect the risk of bladder cancer. Toxicol Sci 164:328–338. https://doi.org/10.1093/toxsci/kfy087

    Article  CAS  PubMed  Google Scholar 

  30. Surenbaatar U, Kim BG, Son HJ, Cho SS, Kim GM, Lim HJ, Kwon JY, Kim KH, Hong YS (2021) MTHFR, As3MT and GSTO1 polymorphisms influencing arsenic metabolism in residents near abandoned metal mines in South Korea. J Environ Health Sci 47:530–539. https://doi.org/10.5668/JEHS.2021.47.6.530

    Article  Google Scholar 

  31. Lim JA, Kwon HJ, Ha M, Kim H, Oh SY, Kim JS, Lee SA, Park JD, Hong YS, Sohn SJ, Pyo H, Park KS, Lee KG, Kim YD, Jun S, Hwang MS (2015) Korean research project on the integrated exposure assessment of hazardous substances for food safety. Environ Health Toxicol 30:e2015004. https://doi.org/10.5620/eht.e2015004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seo MN, Lee SG, Eom SY, Kim J, Oh SY, Kwon HJ, Kim H, Choi BS, Yu IJ, Park JD (2016) Estimation of total and inorganic arsenic intake from the diet in Korean adults. Arch Environ Contam Toxicol 70:647–656. https://doi.org/10.1007/s00244-015-0257-1

    Article  CAS  PubMed  Google Scholar 

  33. WHO (2011) Evaluation of certain contaminants in food: seventy second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series 959. http://apps.who.int/iris/bitstream/10665/44514/1/WHO_TRS_959_eng.pdf. Accessed 03 Sept 2015

  34. Bae HS, Kang IG, Lee SG, Eom SY, Kim YD, Oh SY, Kwon HJ, Park KS, Kim H, Choi BS, Yu IJ, Park JD (2016) Arsenic exposure and seafood intake in Korean adults. Hum Exp Toxicol 36:451–460. https://doi.org/10.1177/0960327116665673

    Article  CAS  PubMed  Google Scholar 

  35. Hornung RW, Reed LD (1990) Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51. https://doi.org/10.1080/1047322X.1990.10389587

    Article  CAS  Google Scholar 

  36. Eom SY, Lim JA, Kim YD, Choi BS, Hwang MS, Park JD, Kim H, Kwon HJ (2016) Allele frequencies of the single nucleotide polymorphisms related to the body burden of heavy metals in the Korean population and their ethnic differences. Toxicol Res 32:195–205. https://doi.org/10.5487/TR.2016.32.3.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One 2:e841. https://doi.org/10.1371/journal.pone.0000841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gloerich M, Bos JL (2011) Regulating rap small G-proteins in time and space. Trends Cell Biol 21:615–623. https://doi.org/10.1016/j.tcb.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  39. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M (2012) De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 44:1365–1369. https://doi.org/10.1038/ng.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gladwin TE, Derks EM, Rietschel M, Mattheisen M, Breuer R, Schulze TG, Nöthen MM, Levinson D, Shi J, Gejman PV, Cichon S, Ophoff RA, Genetic Risk and Outcome of Psychosis (GROUP) (2012) Segment-wise genome-wide association analysis identifies a candidate region associated with schizophrenia in three independent samples. PloS One 7:e38828. https://doi.org/10.1371/journal.pone.0038828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One 3:e2880. https://doi.org/10.1371/journal.pone.0002880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keene KL, Quinlan AR, Hou X, Hall IM, Mychaleckyj JC, Onengut-Gumuscu S, Concannon P (2012) Evidence for two independent associations with type 1 diabetes at the 12q13 locus. Genes Immun 13:66–70. https://doi.org/10.1038/gene.2011.56

    Article  CAS  PubMed  Google Scholar 

  43. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  44. Godbout R, Packer M, Bie W (1998) Overexpression of a DEAD box protein (DDX1) in neuroblastoma and retinoblastoma cell lines. J Biol Chem 273:21161–21168. https://doi.org/10.1074/jbc.273.33.21161

    Article  CAS  PubMed  Google Scholar 

  45. Bléoo S, Sun X, Hendzel MJ, Rowe JM, Packer M, Godbout R (2001) Association of human DEAD box protein DDX1 with a cleavage stimulation factor involved in 3’-end processing of pre-MRNA. Mol Biol Cell 12:3046–3059. https://doi.org/10.1091/mbc.12.10.3046

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abdelhaleem M (2004) Do human RNA helicases have a role in cancer? Biochim Biophys Acta 1704:37–46. https://doi.org/10.1016/j.bbcan.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  47. Michibata H, Yanaka N, Kanoh Y, Okumura K, Omori K (2001) Human Ca2+/calmodulin-dependent phosphodiesterase PDE1A: novel splice variants, their specific expression, genomic organization, and chromosomal localization. Biochim Biophys Acta 1517:278–287. https://doi.org/10.1016/s0167-4781(00)00293-1

    Article  CAS  PubMed  Google Scholar 

  48. Tazawa S, Yamato T, Fujikura H, Hiratochi M, Itoh F, Tomae M, Takemura Y, Maruyama H, Sugiyama T, Wakamatsu A, Isogai T, Isaji M (2005) SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci 76:1039–1050. https://doi.org/10.1016/j.lfs.2004.10.016

    Article  CAS  PubMed  Google Scholar 

  49. Calatayud M, Barrios JA, Vélez D, Devesa V (2012) In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem Res Toxicol 25:446–453. https://doi.org/10.1021/tx200491f

    Article  CAS  PubMed  Google Scholar 

  50. Shi Q, Song X, Wang J, Gu J, Zhang W, Hu J, Zhou X, Yu R (2015) FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation. J Mol Neurosci 55:32–41. https://doi.org/10.1007/s12031-014-0355-y

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Martindale JL, Holbrook NJ, Liu Y (1998) Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 18:5178–5188. https://doi.org/10.1128/MCB.18.9.5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suc I, Meilhac O, Lajoie-Mazenc I, Vandaele J, Jürgens G, Salvayre R, Nègre-Salvayre A (1998) Activation of EGF receptor by oxidized LDL. FASEB J 12:665–671. https://doi.org/10.1096/fasebj.12.9.665

    Article  CAS  PubMed  Google Scholar 

  53. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y, Krainer AR, Jojic N, Scherer SW, Blencowe BJ, Frey BJ (2015) RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806. https://doi.org/10.1126/science.1254806

    Article  CAS  PubMed  Google Scholar 

  54. Waters SB, Devesa V, Razo LMD, Styblo M, Thomas DJ (2004) Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem Res Toxicol 17:404–409. https://doi.org/10.1021/tx0342161

    Article  CAS  PubMed  Google Scholar 

  55. Engström KS, Nermell B, Concha G, Strömberg U, Vahter M, Broberg K (2009) Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res 667:4–14. https://doi.org/10.1016/j.mrfmmm.2008.07.003

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by a Grant (13162MFDS778 and 14162MFDS654) from the Ministry of Food and Drug Safety in 2013 and 2014.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by S-GL, S-YE, J-AL, B-SC, H-JK, Y-SH, Y-DK, HK and J-DP. The first draft of the manuscript was written by S-GL and S-YE and all authors commented on previous versions of the manuscript. J-DP supervised and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jung-Duck Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of Dankook University Hospital (IRB No. 2013-03-008) and the Institutional Review Board of Chung-Ang University (2014-0031), Republic of Korea.

Consent to participate

Informed consent was obtained from all individual participants.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 339 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SG., Eom, SY., Lim, JA. et al. Association between urinary arsenic concentration and genetic polymorphisms in Korean adults. Toxicol Res. 40, 179–188 (2024). https://doi.org/10.1007/s43188-023-00216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00216-x

Keywords

Navigation