Skip to main content

Advertisement

Log in

YPEL3 expression induces cellular senescence via the Hippo signaling pathway in human breast cancer cells

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

The Hippo pathway is a signaling pathway that controls organ size in animals by regulating cell proliferation and apoptosis. Yes-associated protein 1 (YAP1), an oncogene associated with the development and progression of breast cancer, is downregulated by the Hippo pathway and is associated with the development and progression of breast cancer. Yippee-like 3 (YPEL3) is a target gene of the tumor suppressor protein p53, and its activation has been shown to inhibit cell growth, induce cellular senescence, and suppress tumor cell metastasis. In this study, we found that YAP1 inhibits the expression of YPEL3 expression in breast cancer cells. Furthermore, a decrease in lamin B1, a marker protein of cellular senescence, coupled with the activation of senescence-associated β-galactosidase indicated that upregulating YPEL3 levels through YAP1 downregulation can induce cellular senescence. Additionally, elevated YPEL3 levels resulted in higher levels of oxygen consumption rate in mitochondria, thus promoting apoptosis. This suggests that YPEL3 plays a crucial role in regulating oxidative stress and cell apoptosis in breast cancer cells. Therefore, the interaction between YAP1 and YPEL3 represents a novel mechanism of cellular senescence mediated by the Hippo signaling pathway. Collectively, our findings suggest that the Hippo signaling pathway plays an important role in regulating cellular senescence, which could have implications for the development of new therapeutic strategies for diseases such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The Kaplan–Meier plot data that supports this study are available on the Kaplan–Meier Plotter website (https://kmplot.com/analysis/). Further information about our study can be provided by the corresponding author upon reasonable request.

References

  1. Han Y (2019) Analysis of the role of the Hippo pathway in cancer. J Transl Med 17:116. https://doi.org/10.1186/s12967-019-1869-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13:63–79. https://doi.org/10.1038/nrd4161

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Ji JY, Yu M et al (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11:1444–1450. https://doi.org/10.1038/ncb1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuttle R, Simon M, Hitch DC et al (2011) Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol 18:1791–1796. https://doi.org/10.1245/s10434-011-1558-x

    Article  PubMed  Google Scholar 

  5. Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ (2010) YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res 70:3566–3575. https://doi.org/10.1158/0008-5472.CAN-09-3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong X, Li Y, Zhang X (2018) Increased expression of the YPEL3 gene in human colonic adenocarcinoma tissue and the effects on proliferation, migration, and invasion of colonic adenocarcinoma cells in vitro via the Wnt/β-catenin signaling pathway. Med Sci Monit 24:4767–4775. https://doi.org/10.12659/MSM.908173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie Q, Chen J, Feng H et al (2013) YAP/TEAD–mediated transcription controls cellular senescence. Cancer Res 73:3615–3624. https://doi.org/10.1158/0008-5472.CAN-12-3793

    Article  CAS  PubMed  Google Scholar 

  8. Lee S, Lee J (2019) Cellular senescence: a promising strategy for cancer therapy. BMB Rep 52:35–41. https://doi.org/10.5483/BMBRep.2019.52.1.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence-associated secretory phenotype. Front Cell Dev Biol 9:645593. https://doi.org/10.3389/fcell.2021.645593

    Article  PubMed  PubMed Central  Google Scholar 

  10. He L, Chen Y, Feng J, Sun W, Li S, Ou M, Tang L (2017) Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway. Int J Biochem Cell Biol 90:29–37. https://doi.org/10.1016/j.biocel.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  11. Zeng S, Shen WH, Liu L (2018) Senescence and cancer. Cancer Transl Med 4:70–74. https://doi.org/10.4103/ctm.ctm_22_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim H, Chang J, Shao L et al (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693–703. https://doi.org/10.1111/acel.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiley CD, Velarde MC, Lecot P et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314. https://doi.org/10.1016/j.cmet.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  14. Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci USA 101:10428–10433. https://doi.org/10.1073/pnas.0401424101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freund A, Laberge R, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066–2075. https://doi.org/10.1091/mbc.e11-10-0884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campisi J, Kim SH, Lim CS, Rubio M (2001) Cellular senescence, cancer, and aging: the telomere connection. Exp Gerontol 36:1619–1637. https://doi.org/10.1016/S0531-5565(01)00160-7

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Zhu X, Feng W et al (2015) Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am J Cancer Res 6:27–37

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Q, Quan M, Xu L et al (2022) Enhanced nuclear localization of YAP1-2 contributes to EGF-induced EMT in NSCLC. J Cell Mol Med 26:1013–1023. https://doi.org/10.1111/jcmm.17150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, Berberich SJ (2012) Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer 130:2291–2299. https://doi.org/10.1002/ijc.26239

    Article  CAS  PubMed  Google Scholar 

  20. Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O (2017) Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 7:15678. https://doi.org/10.1038/s41598-017-15901-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (β)-galactosidase reflects an increase in lysosomal mass during replicative aging of human endothelial cells. J Cell Sci 113:3613–3622. https://doi.org/10.1242/jcs.113.20.3613

    Article  CAS  PubMed  Google Scholar 

  22. Olga M, Véronique B, Antoine R, Xavier D-S, Gerardo F (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507. https://doi.org/10.1128/MCB.01868-08

    Article  CAS  Google Scholar 

  23. Wang D, Liu Y, Zhang R et al (2016) Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget 7:28286–28300. https://doi.org/10.18632/oncotarget.8536

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pan D (2010) The Hippo signaling pathway in development and cancer. Dev Cell 19:491–505. https://doi.org/10.1016/j.devcel.2010.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo L, Chen Y, Luo J, Zheng J, Shao G (2019) YAP1 overexpression is associated with poor prognosis of breast cancer patients and induces breast cancer cell growth by inhibiting PTEN. FEBS Open Bio 9:437–445. https://doi.org/10.1002/2211-5463.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen J, You H, Li Y, Xu Y, He Q, Harris RC (2018) EGF receptor–dependent YAP activation is important for renal recovery from AKI. J Am Soc Nephrol 29:2372–2385. https://doi.org/10.1681/ASN.2017121272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ando T, Arang N, Wang Z et al (2021) EGFR regulates the hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun Biol 4:1237. https://doi.org/10.1038/s42003-021-02744-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304. https://doi.org/10.1080/15384101.2014.1000134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim S, Mehta HH, Wan J et al (2018) Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging 10:1239–1256. https://doi.org/10.18632/aging.101463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma S, Tang T, Probst G et al (2022) Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nat Commun 13:1061. https://doi.org/10.1038/s41467-022-28691-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (Grant no. 2021R1A2C201239513, 2022R1A5A600076012) and the Chung-Ang University Graduate Research Scholarship in 2021. The funding agency had no role in the study design, data collection or analysis, the decision to publish, or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Chun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Lee, H., Park, H. et al. YPEL3 expression induces cellular senescence via the Hippo signaling pathway in human breast cancer cells. Toxicol Res. 39, 711–719 (2023). https://doi.org/10.1007/s43188-023-00208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00208-x

Keywords

Navigation