Skip to main content

Advertisement

Log in

Integrative roles of sphingosine kinase in liver pathophysiology

  • Review Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this study are available in article.

References

  1. Ogretmen B, Hannun YAJNRC (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604–616. https://doi.org/10.1038/nrc1411

    Article  CAS  PubMed  Google Scholar 

  2. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  3. Hannun YA, Obeid LM (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19(3):175–191. https://doi.org/10.1038/nrm.2017.107

    Article  CAS  PubMed  Google Scholar 

  4. Baeyens A, Fang V, Chen C, Schwab SR (2015) Exit strategies: S1P signaling and T cell migration. Trends Immunol 36(12):778–787. https://doi.org/10.1016/j.it.2015.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Obeid LM et al (1993) Programmed cell death induced by ceramide. Science 259(5102):1769–1771. https://doi.org/10.1126/science.8456305

    Article  CAS  PubMed  Google Scholar 

  6. Venable ME et al (1995) Role of ceramide in cellular senescence (*). J Biol Chem 270(51):30701–30708. https://doi.org/10.1074/jbc.270.51.30701

    Article  CAS  PubMed  Google Scholar 

  7. Nava VE et al (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Can Res 60(16):4468–4474

    CAS  Google Scholar 

  8. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7):489–503. https://doi.org/10.1038/nrc2875

    Article  CAS  PubMed  Google Scholar 

  9. Hait NC, Maiti A (2017) The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators Inflamm 2017:4806541. https://doi.org/10.1155/2017/4806541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snider AJ, Gandy KAO, Obeid LM (2010) Sphingosine kinase: role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 92(6):707–715. https://doi.org/10.1016/j.biochi.2010.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18(1):33–50. https://doi.org/10.1038/nrc.2017.96

    Article  CAS  PubMed  Google Scholar 

  12. Pitman MR et al (2015) A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 6(9):7065. https://doi.org/10.18632/oncotarget.3178

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gandy KAO, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Springer, Berlin. https://doi.org/10.1007/978-3-7091-1511-4_14

    Book  Google Scholar 

  14. Kusner DJ et al (2007) The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J Biol Chem 282(32):23147–23162. https://doi.org/10.1074/jbc.M700193200

    Article  CAS  PubMed  Google Scholar 

  15. Siow D, Wattenberg B (2011) The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 46(5):365–375. https://doi.org/10.3109/10409238.2011.580097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pappu R et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316(5822):295–298. https://doi.org/10.1126/science.1139221

    Article  CAS  PubMed  Google Scholar 

  17. Lu Z-P et al (2015) Hepatitis B virus X protein promotes human hepatoma cell growth via upregulation of transcription factor AP2α and sphingosine kinase 1. Acta Pharmacol Sin 36(10):1228–1236. https://doi.org/10.1038/aps.2015.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lan T et al (2018) Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology 68(3):1070–1086. https://doi.org/10.1002/hep.29885

    Article  CAS  PubMed  Google Scholar 

  19. Chen J et al (2016) Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: role of PPARγ. Biochim Biophys Acta Mol Cell Biol Lipid 1861(2):138–147. https://doi.org/10.1016/j.bbalip.2015.11.006

    Article  CAS  Google Scholar 

  20. Kwong EK et al (2019) The role of sphingosine kinase 2 in alcoholic liver disease. Digest Liv Dis 51(8):1154–1163. https://doi.org/10.1016/j.dld.2019.03.020

    Article  CAS  Google Scholar 

  21. Geng T et al (2015) SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res 56(12):2359–2371. https://doi.org/10.1194/jlr.M063511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qi Y et al (2015) Sphingosine kinase 1 protects hepatocytes from lipotoxicity via down-regulation of IRE1α protein expression. J Biol Chem 290(38):23282–23290. https://doi.org/10.1074/jbc.M115.677542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian T et al (2016) Sphingosine kinase 1 inhibition improves lipopolysaccharide/D-galactosamine-induced acute liver failure by inhibiting mitogen-activated protein kinases pathway. United Eur Gastroenterol J 4(5):677–685. https://doi.org/10.1177/2050640616637968

    Article  CAS  Google Scholar 

  24. Hannun YA, Obeid L (2011) Many ceramides. J Biol Chem 286(32):27855–27862. https://doi.org/10.1074/jbc.R111.254359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gandy KAO, Obeid L (2013) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Chim 1831(1):157–166. https://doi.org/10.1016/j.bbalip.2012.07.002

    Article  CAS  Google Scholar 

  26. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018. https://doi.org/10.1016/j.cellsig.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  27. Menaldino DS et al (2003) Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharm Res 47(5):373–381. https://doi.org/10.1016/s1043-6618(03)00054-9

    Article  CAS  Google Scholar 

  28. Herr DR et al (2007) Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci 27(6):1474–1478. https://doi.org/10.1523/JNEUROSCI.4245-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olivera A et al (1998) Purification and characterization of rat kidney sphingosine kinase. J Biol Chem 273(20):12576–12583. https://doi.org/10.1074/jbc.273.20.12576

    Article  CAS  PubMed  Google Scholar 

  30. Gupta P et al (2020) Functional implications of pH-induced conformational changes in the Sphingosine kinase 1. Spectrochim Acta Part A Mol Biomol Spectrosc 225:117453. https://doi.org/10.1016/j.saa.2019.117453

    Article  CAS  Google Scholar 

  31. Fukuda Y et al (2003) Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 309(1):155–160. https://doi.org/10.1016/s0006-291x(03)01551-1

    Article  CAS  PubMed  Google Scholar 

  32. Kim RH et al (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta (BBA) Mol Cell Biol Liq 1791(7):92–696. https://doi.org/10.1016/j.bbalip.2009.02.011

    Article  CAS  Google Scholar 

  33. Nieuwenhuis B et al (2009) Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P 3 in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone. J Mol Med 87:645–657. https://doi.org/10.1007/s00109-009-0468-x

    Article  CAS  PubMed  Google Scholar 

  34. Li J et al (2016) Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway. Tumor Biol 37(8):10587–10593. https://doi.org/10.1007/s13277-016-4954-9

    Article  CAS  Google Scholar 

  35. Xia P et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10(23):1527–1530. https://doi.org/10.1016/s0960-9822(00)00834-4

    Article  CAS  PubMed  Google Scholar 

  36. Meng X-D et al (2014) Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumor Biol 35:2075–2080. https://doi.org/10.1007/s13277-013-1275-0

    Article  CAS  Google Scholar 

  37. Iwabuchi K et al (2015) Role of ceramide from glycosphingolipids and its metabolites in immunological and inflammatory responses in humans. Mediat Inflamm 2015:1. https://doi.org/10.1155/2015/120748

    Article  CAS  Google Scholar 

  38. Igarashi N et al (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278(47):46832–46839. https://doi.org/10.1074/jbc.M306577200

    Article  CAS  PubMed  Google Scholar 

  39. Hait NC et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257. https://doi.org/10.1126/science.1176709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maceyka M et al (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280(44):37118–37129

    Article  CAS  PubMed  Google Scholar 

  41. Strub GM et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25:600. https://doi.org/10.1096/fj.10-167502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sobue S et al (2005) Transcription factor specificity protein 1 (Sp1) is the main regulator of nerve growth factor-induced sphingosine kinase 1 gene expression of the rat pheochromocytoma cell line, PC12. J Neurochem 95(4):940–949. https://doi.org/10.1111/j.1471-4159.2005.03399.x

    Article  CAS  PubMed  Google Scholar 

  43. Lu Z et al (2016) Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget 7(1):241. https://doi.org/10.18632/oncotarget.6280

    Article  PubMed  Google Scholar 

  44. Hazar-Rethinam M et al (2015) A novel E2F/sphingosine kinase 1 axis regulates anthracycline response in squamous cell carcinoma A novel E2F/Sphk1 axis regulates doxorubicin sensitivity. Clin Cancer 21(2):417–427. https://doi.org/10.1158/1078-0432.CCR-14-1962

    Article  CAS  Google Scholar 

  45. Postepska-Igielska A et al (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60(4):626–636. https://doi.org/10.1016/j.molcel.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  46. Cuvillier O, Ader I (2011) Hypoxia-inducible factors and sphingosine 1-phosphate signaling. ACAMC 11(9):854–862. https://doi.org/10.2174/187152011797655050

    Article  CAS  Google Scholar 

  47. Anelli V et al (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells: role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375. https://doi.org/10.1074/jbc.M708241200

    Article  CAS  PubMed  Google Scholar 

  48. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22(24):4991–5004. https://doi.org/10.1200/JCO.2004.05.061

    Article  CAS  PubMed  Google Scholar 

  49. Kim S et al (2015) The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells. Cell Death Differ 22(9):1517–1525. https://doi.org/10.1038/cdd.2015.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paugh BS et al (2009) Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J Biol Chem 284(6):3408–3417. https://doi.org/10.1074/jbc.M807170200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doll F, Pfeilschifter J, Huwiler AJ (2007) Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine Cancer 14(2):325–335. https://doi.org/10.1677/ERC-06-0050

    Article  CAS  Google Scholar 

  52. Yamanaka M et al (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-β and mediates TIMP-1 up-regulation. J Biol Chem 279(52):53994–54001. https://doi.org/10.1074/jbc.M410144200

    Article  CAS  PubMed  Google Scholar 

  53. Wang S et al (2018) Transforming growth factor β1 (TGF-β1) appears to promote coronary artery disease by upregulating sphingosine kinase 1 (SPHK1) and further upregulating its downstream TIMP-1. Med Sci Monit 24:7322. https://doi.org/10.12659/MSM.910707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ge J et al (2016) Essential roles of RNA-binding protein HuR in activation of hepatic stellate cells induced by transforming growth factor-β1. Sci Rep 6(1):22141. https://doi.org/10.1038/srep22141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sobue S et al (2008) v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins. Oncogene 27(46):6023–6033. https://doi.org/10.1038/onc.2008.198

    Article  CAS  PubMed  Google Scholar 

  56. Lee SY et al (2015) Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 62(1):135–146. https://doi.org/10.1002/hep.27804

  57. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  58. Zhang H et al (2013) MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1. J Ovar Res 6(1):1–9. https://doi.org/10.1186/1757-2215-6-84

    Article  CAS  Google Scholar 

  59. Zhao Y et al (2017) MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 8(15):25005. https://doi.org/10.18632/oncotarget.15334

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li J et al (2016) Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene 35(42):5501–5514. https://doi.org/10.1038/onc.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang D et al (2019) MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1. Biosci Biotechnol Biochem 83(5):836–844. https://doi.org/10.1080/09168451.2019.1569496

    Article  CAS  PubMed  Google Scholar 

  62. Zhao X et al (2015) MiRNA-125b inhibits proliferation and migration by targeting SphK1 in bladder cancer. Am J Transl Res 7(11):2346

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xue G et al (2021) MicroRNA-6862 inhibition elevates sphingosine kinase 1 and protects neuronal cells from MPP+-induced apoptosis. Aging 13(1):1369. https://doi.org/10.18632/aging.202335

    Article  CAS  Google Scholar 

  64. Yao C et al (2020) The therapeutic value of the SphK1-targeting microRNA-3677 in human osteosarcoma cells. Aging 12(6):5399. https://doi.org/10.18632/aging.102961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen M-B et al (2015) MicroRNA-101 down-regulates sphingosine kinase 1 in colorectal cancer cells. Biochem Biophys Res Commun 463(4):954–960. https://doi.org/10.1016/j.bbrc.2015.06.041

    Article  CAS  PubMed  Google Scholar 

  66. Lu Z et al (2015) MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochem Biophys Res Commun 468(1–2):8–13. https://doi.org/10.1016/j.bbrc.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  67. Liu Z et al (2018) MiR-659-3p regulates the progression of chronic myeloid leukemia by targeting SPHK1. Int J Clin Exp Pathol 11(5):2470

    PubMed  PubMed Central  Google Scholar 

  68. Cao X-Z et al (2019) MiR-128 suppresses the growth of thyroid carcinoma by negatively regulating SPHK1. Biomed Pharmacother 109:1960–1966. https://doi.org/10.1016/j.biopha.2018.08.052

    Article  CAS  PubMed  Google Scholar 

  69. Wang Z et al (2018) Up-regulation and tumor-promoting role of SPHK1 were attenuated by miR-330-3p in gastric cancer. IUBMB 70(11):1164–1176. https://doi.org/10.1002/iub.1934

    Article  CAS  Google Scholar 

  70. Pinho FG et al (2013) Downregulation of microRNA-515-5p by the estrogen receptor modulates sphingosine kinase 1 and breast cancer cell proliferation ER downregulates miR-515-5p-modulating SK1. Cancer Res 73(19):5936–5948. https://doi.org/10.1158/0008-5472.CAN-13-0158

    Article  CAS  PubMed  Google Scholar 

  71. Liang W et al (2017) Comprehensive gene and microRNA expression profiling reveals a role for miRNAs in the oncogenic roles of SphK1 in papillary thyroid cancer. J Cancer Res Clin Oncol 143:601–611. https://doi.org/10.1007/s00432-016-2315-0

    Article  CAS  PubMed  Google Scholar 

  72. Xiao G et al (2018) MicroRNA-338-3p suppresses proliferation of human liver cancer cells by targeting SphK2. Oncol Res 26(8):1183. https://doi.org/10.3727/096504018X15151495109394

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen Y et al (2019) Silencing of microRNA-708 promotes cell growth and epithelial-to-mesenchymal transition by activating the SPHK2/AKT/β-catenin pathway in glioma. Cell Death Dis 10(6):448. https://doi.org/10.1038/s41419-019-1671-5

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maceyka M et al (2006) Activation of sphingosine kinase 1. Springer, Japan, pp 197–206

    Google Scholar 

  75. Nishino S et al (2019) Translocation and activation of sphingosine kinase 1 by ceramide-1-phosphate. J Cell Biochem 120(4):5396–5408. https://doi.org/10.1002/jcb.27818

    Article  CAS  PubMed  Google Scholar 

  76. Bao Y et al (2017) Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer. Int J Mol Sci 18(10):2109. https://doi.org/10.3390/ijms18102109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jarman KE et al (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium-and integrin-binding protein 1. J Biol Chem 285(1):483–492. https://doi.org/10.1074/jbc.M109.068395

    Article  CAS  PubMed  Google Scholar 

  78. Norris J (2012) The role of sphingolipids in cancer development and therapy. Academic Press, New York

    Google Scholar 

  79. Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36(2):97–107. https://doi.org/10.1016/j.tibs.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  80. Dephoure N et al (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci 105(31):10762–10767. https://doi.org/10.1073/pnas.0805139105

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barr RK et al (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283(50):34994–35002. https://doi.org/10.1074/jbc.M804658200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu H et al (2012) Acetylation of sphingosine kinase 1 regulates cell growth and cell-cycle progression. Biochem Biophys Res Commun 417(4):1242–1247. https://doi.org/10.1016/j.bbrc.2011.12.117

    Article  CAS  PubMed  Google Scholar 

  83. Hait NC et al (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280(33):29462–29469. https://doi.org/10.1074/jbc.M502922200

    Article  CAS  PubMed  Google Scholar 

  84. Mastrandrea LD, Sessanna SM, Laychock SGJD (2005) Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes 54(5):1429–1436. https://doi.org/10.2337/diabetes.54.5.1429

    Article  CAS  PubMed  Google Scholar 

  85. Hait NC et al (2007) Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 282(16):12058–12065. https://doi.org/10.1074/jbc.M609559200

    Article  CAS  PubMed  Google Scholar 

  86. Ding G et al (2007) Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem 282(37):27493–27502. https://doi.org/10.1074/jbc.M701641200

    Article  CAS  PubMed  Google Scholar 

  87. Xia P et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling. J Biol Chem 277(10):7996–8003. https://doi.org/10.1074/jbc.M111423200

    Article  CAS  PubMed  Google Scholar 

  88. Fujita T et al (2004) δ-Catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem J 382(2):717–723. https://doi.org/10.1042/BJ20040141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Urtz N et al (2004) Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with Lyn kinase. Mol Cell Biol 24(19):8765–8777. https://doi.org/10.1128/MCB.24.19.8765-8777.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Olivera A et al (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281(5):2515–2525. https://doi.org/10.1074/jbc.M508931200

    Article  CAS  PubMed  Google Scholar 

  91. Lacaná E et al (2002) Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J Biol Chem 277(36):32947–32953. https://doi.org/10.1074/jbc.M202841200

    Article  PubMed  Google Scholar 

  92. Fukuda Y et al (2004) Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta Mol Cell Biol Lipid 1636(1):12–21. https://doi.org/10.1016/j.bbalip.2003.11.006

    Article  CAS  Google Scholar 

  93. Sun J et al (2006) FHL2/SLIM3 decreases cardiomyocyte survival by inhibitory interaction with sphingosine kinase-1. Circ Res 99(5):468–476. https://doi.org/10.1161/01.RES.0000239410.65551.b3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamane D et al (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659. https://doi.org/10.1074/jbc.M807498200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hayashi S et al (2002) Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J Biol Chem 277(36):33319–33324. https://doi.org/10.1074/jbc.M201442200

    Article  CAS  PubMed  Google Scholar 

  96. Maceyka M et al (2004) Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett 568(1–3):30–34. https://doi.org/10.1016/j.febslet.2004.04.093

    Article  CAS  PubMed  Google Scholar 

  97. Zhu W et al (2017) CIB1 contributes to oncogenic signalling by Ras via modulating the subcellular localisation of sphingosine kinase 1. Oncogene 36(18):2619–2627. https://doi.org/10.1038/onc.2016.428

    Article  CAS  PubMed  Google Scholar 

  98. Liu H et al (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278(41):40330–40336. https://doi.org/10.1074/jbc.M304455200

    Article  CAS  PubMed  Google Scholar 

  99. Yoshimoto T et al (2003) Positive modulation of IL-12 signaling by sphingosine kinase 2 associating with the IL-12 receptor β1 cytoplasmic region. J Immunol 171(3):1352–1359. https://doi.org/10.4049/jimmunol.171.3.1352

    Article  CAS  PubMed  Google Scholar 

  100. Leclercq TM et al (2008) Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283(15):9606–9614. https://doi.org/10.1074/jbc.M708782200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu X et al (2018) Sphingosine kinase 2 cooperating with Fyn promotes kidney fibroblast activation and fibrosis via STAT3 and AKT. Biochim Biophys Acta Mol Basis Dis 1864(11):3824–3836. https://doi.org/10.1016/j.bbadis.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  102. Pitman MR, Pitson SM (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Current Cancer Drug Target 10(4):354–367. https://doi.org/10.2174/156800910791208599

    Article  CAS  Google Scholar 

  103. Nagahashi M et al (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735. https://doi.org/10.1158/0008-5472.CAN-11-2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chahar KR et al (2021) Sphingosine kinases negatively regulate the expression of matrix metalloproteases (MMP1 and MMP3) and their inhibitor TIMP3 genes via sphingosine 1-phosphate in extravillous trophoblasts. Reprod Med Biol 20(3):267–276. https://doi.org/10.1002/rmb2.12379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma AK (2011) Sphingo-guanidines and their use as inhibitors of sphingosine kinase (WO2010078247). Expert Opin Ther Patent 21(5):807–812. https://doi.org/10.1517/13543776.2011.573787

    Article  CAS  Google Scholar 

  106. Pulkoski-Gross MJ et al (2017) Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglad Lipid Medit 130:47–56. https://doi.org/10.1016/j.prostaglandins.2017.03.006

    Article  CAS  Google Scholar 

  107. Xiang Y et al (2009) Discovery of novel sphingosine kinase 1 inhibitors. Bioorg Med Chem Lett 19(21):6119–6121. https://doi.org/10.1016/j.bmcl.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  108. Kharel Y et al (2011) Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 440(3):345–353. https://doi.org/10.1042/BJ20110817

    Article  CAS  PubMed  Google Scholar 

  109. Patwardhan NN et al (2015) Structure− activity relationship studies and in vivo activity of guanidine-based sphingosine kinase inhibitors: discovery of sphK1-and sphK2-selective inhibitors. J Med Chem 58(4):1879–1899. https://doi.org/10.1021/jm501760d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mathews TP et al (2010) Discovery, biological evaluation, and structure–activity relationship of amidine based sphingosine kinase inhibitors. J Med Chem 53(7):2766–2778. https://doi.org/10.1021/jm901860h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gustin DJ et al (2013) Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23(16):4608–4616. https://doi.org/10.1016/j.bmcl.2013.06.030

    Article  CAS  PubMed  Google Scholar 

  112. Rex K et al (2013) Sphingosine kinase activity is not required for tumor cell viability. PLoS ONE 8:e68328. https://doi.org/10.1371/journal.pone.0068328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baek DJ et al (2013) Synthesis of selective inhibitors of sphingosine kinase 1. Chem Commun 49(21):2136–2138. https://doi.org/10.1039/c3cc00181d

    Article  CAS  Google Scholar 

  114. Lynch KR, Thorpe SB, Santos WL (2016) Sphingosine kinase inhibitors: a review of patent literature (2006–2015). Expert Opin Ther Patent 26(12):1409–1416. https://doi.org/10.1080/13543776.2016.1226282

    Article  CAS  Google Scholar 

  115. Schnute ME et al (2012) Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444(1):79–88. https://doi.org/10.1042/BJ20111929

    Article  CAS  PubMed  Google Scholar 

  116. Chen L et al (2021) Blocking SphK1/S1P/S1PR1 signaling pathway alleviates lung injury caused by sepsis in acute ethanol intoxication mice. Inflammation 44(6):2170–2179. https://doi.org/10.1007/s10753-021-01490-3

    Article  CAS  PubMed  Google Scholar 

  117. Deng R et al (2021) The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 35(9):5305–5317. https://doi.org/10.1002/ptr.7211

    Article  CAS  PubMed  Google Scholar 

  118. Ha AW et al (2020) Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 319(3):L497–L512. https://doi.org/10.1152/ajplung.00169.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhong M et al (2020) Inhibition of sphingosine kinase 1 attenuates sepsis-induced microvascular leakage via inhibiting macrophage NLRP3 inflammasome activation in mice. Anesthesiology 132(6):1503–1515. https://doi.org/10.1097/ALN.0000000000003192

    Article  CAS  PubMed  Google Scholar 

  120. Kuroda I et al (2002) Pachastrissamine, a cytotoxic anhydrophytosphingosine from a marine sponge, Pachastrissa sp. J Nat Prod 65(10):1505–1506. https://doi.org/10.1021/np010659y

    Article  CAS  PubMed  Google Scholar 

  121. Salma Y et al (2009) The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 78(5):477–485. https://doi.org/10.1016/j.bcp.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  122. Chen H-J et al (2021) Evaluation of pyrrolidine-based analog of jaspine B as potential SphK1 inhibitors against rheumatoid arthritis. Bioorg Med Chem Lett 34:127754. https://doi.org/10.1016/j.bmcl.2020.127754

    Article  CAS  PubMed  Google Scholar 

  123. Xiang Y et al (2010) Discovery of novel sphingosine kinase-1 inhibitors. Part 2. Bioorg Med Chem Lett 20(15):4550–4554. https://doi.org/10.1016/j.bmcl.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  124. Hengst JA et al (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20(24):7498–7502. https://doi.org/10.1016/j.bmcl.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  125. Young MM et al (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287(15):12455–12468. https://doi.org/10.1074/jbc.M111.309104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. French KJ et al (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318(2):596–603. https://doi.org/10.1124/jpet.106.101345

    Article  CAS  PubMed  Google Scholar 

  127. Loveridge C et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852. https://doi.org/10.1074/jbc.M110.127993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ren S et al (2010) A novel mode of action of the putative sphingosine kinase inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell Physiol Biochem 26(1):97–104. https://doi.org/10.1159/000315110

    Article  CAS  PubMed  Google Scholar 

  129. Bien-Möller S et al (2016) Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. Oncotarget 7(11):13031. https://doi.org/10.18632/oncotarget.7366

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sun D, Wang S (2021) Sphingosine kinases are involved in the regulation of all-trans retinoic acid sensitivity of K562 chronic myeloid leukemia cells. Oncol Lett 22(2):1–9. https://doi.org/10.3892/ol.2021.12842

    Article  CAS  Google Scholar 

  131. Cingolani F et al (2014) Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II [S]. J Lipid Res 55(8):1711–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Noack J et al (2014) A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death Dis 5(9):e1425–e1425. https://doi.org/10.1038/cddis.2014.384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Humphries B, Yang CJO (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6(9):6472. https://doi.org/10.18632/oncotarget.3052

    Article  PubMed  PubMed Central  Google Scholar 

  134. Coward J et al (2009) Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy 5(2):184–193. https://doi.org/10.4161/auto.5.2.7361

    Article  CAS  PubMed  Google Scholar 

  135. Schwartz GK et al (1997) A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin. Clin Cancer Res 3(4):537–543

    CAS  PubMed  Google Scholar 

  136. Edsall LC et al (1998) N, N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37(37):12892–12898. https://doi.org/10.1021/bi980744d

    Article  CAS  PubMed  Google Scholar 

  137. Dick TE et al (2015) The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 352(3):494–508. https://doi.org/10.1124/jpet.114.219659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hengst JA et al (2017) SKI-178: a multitargeted inhibitor of sphingosine kinase and microtubule dynamics demonstrating therapeutic efficacy in acute myeloid leukemia models. Cancer Tranl Med 3(4):109. https://doi.org/10.4103/ctm.ctm_7_17

    Article  CAS  Google Scholar 

  139. Alshaker H et al (2018) Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors. Breast Cancer Res 172:33–43. https://doi.org/10.1007/s10549-018-4900-1

    Article  CAS  Google Scholar 

  140. Childress ES et al (2017) Transforming sphingosine kinase 1 inhibitors into dual and sphingosine kinase 2 selective inhibitors: design, synthesis, and in vivo activity. J Med Chem 60(9):3933–3957. https://doi.org/10.1021/acs.jmedchem.7b00233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bonhoure E et al (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting shingosine kinase-1. Leukemia 20(1):95–102. https://doi.org/10.1038/sj.leu.2404023

    Article  CAS  PubMed  Google Scholar 

  142. Cuvillier O (2008) Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Target 12(8):1009–1020. https://doi.org/10.1517/14728222.12.8.1009

    Article  CAS  Google Scholar 

  143. Niesche R, Haase M (2012) Emotions and ethics: a Foucauldian framework for becoming an ethical educator. Educ Philos Theory 44(3):276–288

    Article  Google Scholar 

  144. Nakagawa H et al (2001) Resveratrol inhibits human breast cancer cell growth and may mitigate the effect of linoleic acid, a potent breast cancer cell stimulator. J Cancer Res Clin Oncol 127:258–264. https://doi.org/10.1007/s004320000190

    Article  CAS  PubMed  Google Scholar 

  145. Maines LW et al (2008) Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Digest Dis Sci 53:997–1012. https://doi.org/10.1007/s10620-007-0133-6

    Article  CAS  PubMed  Google Scholar 

  146. Britten CD et al (2017) A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors phase I study of ABC294640. Clin Cancer Res 23(16):4642–4650. https://doi.org/10.1158/1078-0432.CCR-16-2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brinkmann V et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277(24):21453–21457. https://doi.org/10.1074/jbc.C200176200

    Article  CAS  PubMed  Google Scholar 

  148. Kharel Y et al (2012) Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem J 447(1):149–157. https://doi.org/10.1042/BJ20120609

    Article  CAS  PubMed  Google Scholar 

  149. Kharel Y et al (2015) Sphingosine kinase 2 inhibition and blood sphingosine 1-phosphate levels. J Pharmacol Exp Ther 355(1):23–31. https://doi.org/10.1124/jpet.115.225862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Congdon MD et al (2016) Structure–activity relationship studies and molecular modeling of naphthalene-based sphingosine kinase 2 inhibitors. ACS Med Chem 7(3):229–234. https://doi.org/10.1021/acsmedchemlett.5b00304

    Article  CAS  Google Scholar 

  151. Knudsen ES, Gopal P, Singal A (2014) The changing landscape of hepatocellular carcinoma: etiology, genetics, and therapy. Am J Pathol 184(3):574–583. https://doi.org/10.1016/j.ajpath.2013.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang F, Wu ZJE (2018) Sphingosine kinase 1 overexpression is associated with poor prognosis and oxaliplatin resistance in hepatocellular carcinoma. Exp Ther Med 15(6):5371–5376. https://doi.org/10.3892/etm.2018.6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen T et al (2019) HJURP promotes epithelial-to-mesenchymal transition via upregulating SPHK1 in hepatocellular carcinoma. Int J Biol Sci 15(6):1139. https://doi.org/10.7150/ijbs.30904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chang J et al (2010) Hepatopoietin Cn suppresses apoptosis of human hepatocellular carcinoma cells by up-regulating myeloid cell leukemia-1. J Gastroenterol 16(2):193. https://doi.org/10.3748/wjg.v16.i2.193

    Article  CAS  Google Scholar 

  155. Liu H et al (2017) SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy 13(5):900–913. https://doi.org/10.1080/15548627.2017.1291479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Satyananda V et al (2021) Sphingosine 1-phosphate (S1P) produced by sphingosine kinase 1 (SphK1) and exported via ABCC1 is related to hepatocellular carcinoma (HCC) progression. Am J Cancer Res 11(9):4394

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Miura K et al (2021) Dysregulation of sphingolipid metabolic enzymes leads to high levels of sphingosine-1-phosphate and ceramide in human hepatocellular carcinoma. Hepatol Res 51(5):614–626. https://doi.org/10.1111/hepr.13625

    Article  CAS  PubMed  Google Scholar 

  158. Liang J et al (2018) Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J Control Res 286:348–357. https://doi.org/10.1016/j.jconrel.2018.07.039

    Article  CAS  Google Scholar 

  159. Liu XT et al (2022) Ablation of sphingosine kinase 2 suppresses fatty liver-associated hepatocellular carcinoma via downregulation of ceramide transfer protein. Oncogenesis 11(1):67. https://doi.org/10.1038/s41389-022-00444-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Genest M et al (2022) Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition. J Cell Sci 135(7):jcs259178. https://doi.org/10.1242/jcs.259178

    Article  CAS  PubMed  Google Scholar 

  161. Sánchez DI et al (2017) Melatonin prevents deregulation of the sphingosine kinase/sphingosine 1-phosphate signaling pathway in a mouse model of diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 62(1):e12369. https://doi.org/10.1111/jpi.12369

    Article  CAS  Google Scholar 

  162. Liu H et al (2016) SphK1 inhibitor SKI II inhibits the proliferation of human hepatoma HepG2 cells via the Wnt5A/β-catenin signaling pathway. Life Sci 151:23–29. https://doi.org/10.1016/j.lfs.2016.02.098

    Article  CAS  PubMed  Google Scholar 

  163. Grbčić P et al (2017) Dual sphingosine kinase inhibitor SKI-II enhances sensitivity to 5-fluorouracil in hepatocellular carcinoma cells via suppression of osteopontin and FAK/IGF-1R signalling. Biochem Biophys Res Commun 487(4):782–788. https://doi.org/10.1016/j.bbrc.2017.04.100

    Article  CAS  PubMed  Google Scholar 

  164. Zhang C et al (2013) The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 434(1):35–41. https://doi.org/10.1016/j.bbrc.2013.03.070

    Article  CAS  PubMed  Google Scholar 

  165. Omar HA et al (2011) Retracted: Antitumor effects of OSU-2S, a nonimmunosuppressive analogue of FTY720, in hepatocellular carcinoma. Hepatology 53(6):1943–1958. https://doi.org/10.1002/hep.24293

    Article  CAS  PubMed  Google Scholar 

  166. Shi W et al (2020) Targeting SphK2 reverses acquired resistance of regorafenib in hepatocellular carcinoma. Front Oncol 10:694. https://doi.org/10.3389/fonc.2020.00694

    Article  PubMed  PubMed Central  Google Scholar 

  167. Osawa Y et al (2001) Sphingosine kinase regulates hepatoma cell differentiation: roles of hepatocyte nuclear factor and retinoid receptor. Biochem Biophys Res Commun 286(4):673–677. https://doi.org/10.1006/bbrc.2001.5451

    Article  CAS  PubMed  Google Scholar 

  168. Chen J et al (2018) Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice. Oncotarget 9(21):15635–15649. https://doi.org/10.18632/oncotarget.24583

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lu P-H et al (2017) Identification of sphingosine kinase 1 (SphK1) as a primary target of icaritin in hepatocellular carcinoma cells. Oncotarget 8(14):22800. https://doi.org/10.18632/oncotarget.15205

    Article  PubMed  PubMed Central  Google Scholar 

  170. Funaki M et al (2017) Peretinoin, an acyclic retinoid, inhibits hepatocarcinogenesis by suppressing sphingosine kinase 1 expression in vitro and in vivo. Sci Rep 7(1):16978. https://doi.org/10.1038/s41598-017-17285-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Friedman SL (1993) The cellular basis of hepatic fibrosis–mechanisms and treatment strategies. N Engl J Med 328(25):1828–1835. https://doi.org/10.1056/NEJM199306243282508

    Article  CAS  PubMed  Google Scholar 

  172. Lan T et al (2020) Polydatin attenuates hepatic stellate cell proliferation and liver fibrosis by suppressing sphingosine kinase 1. Biomed Pharmacother 130:110586. https://doi.org/10.1016/j.biopha.2020.110586

    Article  CAS  PubMed  Google Scholar 

  173. González-Fernández B et al (2017) Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. BioFactors 43(2):272–282. https://doi.org/10.1002/biof.1342

    Article  CAS  PubMed  Google Scholar 

  174. Ye Q et al (2021) Salidroside inhibits CCl4-induced liver fibrosis in mice by reducing activation and migration of HSC induced by liver sinusoidal endothelial cell-derived exosomal SphK1. Front Pharmcol 12:677810. https://doi.org/10.3389/fpha.2021.677810

    Article  CAS  Google Scholar 

  175. Yang L et al (2013) Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol 59(1):114–123. https://doi.org/10.1016/j.jhep.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  176. Zhan W et al (2020) Leucine-rich Repeats and Immunoglobulin 1 (LRIG1) Ameliorates Liver Fibrosis and Hepatic Stellate Cell Activation via Inhibiting Sphingosine Kinase 1 (SphK1)/Sphingosine-1-Phosphate (S1P) Pathway. Iran J Allergy Asthma Immunol 19(4):397–408. https://doi.org/10.18502/ijaai.v19i4.4114

    Article  PubMed  Google Scholar 

  177. Sato M et al (2016) Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci Rep 6(1):32119. https://doi.org/10.1038/srep32119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang R et al (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290(52):30684–30696. https://doi.org/10.1074/jbc.M115.671735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hou L et al (2020) Macrophage sphingosine 1-phosphate receptor 2 blockade attenuates liver inflammation and fibrogenesis triggered by NLRP3 inflammasome. Front Immunol 11:1149. https://doi.org/10.3389/fimmu.2020.01149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nassir F et al (2015) Pathogenesis and prevention of hepatic steatosis. Gastroenterol Hepatol 11(3):167

    Google Scholar 

  181. Xie J et al (2020) K27Q/K29Q mutations in sphingosine kinase 1 attenuate high-fat diet induced obesity and altered glucose homeostasis in mice. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-77096-w

    Article  CAS  Google Scholar 

  182. Wang X et al (2013) Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Biochem Pharmacol 86(12):1791–1804. https://doi.org/10.1016/j.bcp.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  183. Cholankeril G, Ahmed A (2018) Alcoholic liver disease replaces hepatitis C virus infection as the leading indication for liver transplantation in the United States. Clin Gastroenterol Hepatol 16(8):1356. https://doi.org/10.1016/j.cgh.2017.11.045

    Article  PubMed  Google Scholar 

  184. Chacko KR, Reinus J (2016) Spectrum of alcoholic liver disease. Clin Liv Dis 20(3):419–427. https://doi.org/10.1016/j.cld.2016.02.002

    Article  Google Scholar 

  185. Frazier TH et al (2011) Treatment of alcoholic liver disease. Ther Adv Gastroenterol 4(1):63–81. https://doi.org/10.1177/1756283X10378925

    Article  Google Scholar 

  186. Mathurin P, Bataller R (2015) Trends in the management and burden of alcoholic liver disease. J Hepatol 62(1):S38–S46. https://doi.org/10.1016/j.jhep.2015.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  187. Eslam M et al (2020) A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 73(1):202–209. https://doi.org/10.1016/j.jhep.2020.03.039

    Article  PubMed  Google Scholar 

  188. Alqarni I et al (2019) Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmcol 164:252–262. https://doi.org/10.1016/j.bcp.2019.04.018

    Article  CAS  Google Scholar 

  189. Li Q et al (2020) Generation of sphingosine-1-phosphate by sphingosine kinase 1 protects nonalcoholic fatty liver from ischemia/reperfusion injury through alleviating reactive oxygen species production in hepatocytes. Free Radic Biol Med 159:136–149. https://doi.org/10.1016/j.freeradbiomed.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  190. Shi Y et al (2021) The alleviating effect of sphingosine kinases 2 inhibitor K145 on nonalcoholic fatty liver. Biochem Biophys Res Commun 580:1–6. https://doi.org/10.1016/j.bbrc.2021.09.060

    Article  CAS  PubMed  Google Scholar 

  191. Rohrbach TD et al (2019) FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice. J Lipid Res 60(7):1311–1322. https://doi.org/10.1194/jlr.M093799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kramer L, Kodras KJLI (2011) Detoxification as a treatment goal in hepatic failure. Liv Int 31:1–4. https://doi.org/10.1111/j.1478-3231.2011.02587.x

    Article  Google Scholar 

  193. Lei Y-C et al (2015) Inhibition of sphingosine kinase 1 ameliorates acute liver failure by reducing high-mobility group box 1 cytoplasmic translocation in liver cells. J Gastroenterol 21(46):13055. https://doi.org/10.3748/wjg.v21.i46.13055

    Article  CAS  Google Scholar 

  194. Lei Y-C et al (2015) Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice. J Gastroenterol 21(48):13438. https://doi.org/10.3748/wjg.v21.i48.13438

    Article  CAS  Google Scholar 

  195. Lei Y-C et al (2016) C5a/C5aR pathway is essential for up-regulating SphK1 expression through p38-MAPK activation in acute liver failure. World J Gastroenterol 22(46):10148. https://doi.org/10.3748/wjg.v22.i46.10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Avni D et al (2021) Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 35(3):e21415. https://doi.org/10.1096/fj.202002540R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MOE) and the Ministry of Education [Grant no. NRF-2021R1I1A3051069 (K. M. K), and NRF-2018R1D1A1B07040460 (J. H. Y)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hwan Ki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.M., Shin, E.J., Yang, J.H. et al. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res. 39, 549–564 (2023). https://doi.org/10.1007/s43188-023-00193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00193-1

Keywords

Navigation