Skip to main content
Log in

Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: biochemical and histopathological responses

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500 µg/L) for 72 h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500 µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids’ profiles as a relevant tool in aquatic ecotoxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boudouresque CH, Verlaque M (2007) Chap. 13 Ecology of Paracentrotus lividus. In Edible sea urchins: biology and ecology Edited by J.M. Lawrence. Elsevier B.V. 37:243–285. doi:https://doi.org/10.1016/s0167-9309(07)80077-9

  2. Lozano J, Galera J, Lopez S et al (1995) Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:179–191. https://doi.org/10.3354/meps122179

    Article  Google Scholar 

  3. Pesando D, Huiltorel P, Dolcinia V et al (2003) Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean Sea urchin, Paracentrotus lividus. Mar Environ Res 55:39–57. https://doi.org/10.1016/s0141-1136(02)00215-5

    Article  CAS  PubMed  Google Scholar 

  4. Mol S, Baygar T, Varlik C, Tosun ŞY (2008) Seasonal variations in yield, fatty acids, amino acids and proximate compositions of sea urchin (Paracentrotus lividus) Roe. J Food Drug Anal 16:5. https://doi.org/10.38212/2224-6614.2363

  5. Camacho C, Rocha AC, Barbosa VL et al (2018) Macro and trace elements in Paracentrotus lividus gonads from South West Atlantic areas. Environ Res 162:297–307. https://doi.org/10.1016/j.envres.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  6. Zhou X, Zhou DY, Lu T et al (2018) Characterization of lipids in three species of sea urchin. Food Chem 241:97–103. https://doi.org/10.1016/j.foodchem.2017.08.076

    Article  CAS  PubMed  Google Scholar 

  7. Archana A, Babu KR (2016) Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chem 197:597–602. https://doi.org/10.1016/j.foodchem.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Siliani S, Melis R, Loi B et al (2016) Influence of seasonal and environmental patterns on the lipid content and fatty acid profiles in gonads of the edible sea urchin Paracentrotus lividus from Sardinia. Mar Environ Res 113:124–133. https://doi.org/10.1016/j.marenvres.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Martínez-Pita I, García FJ, Pita ML (2010) The effect of seasonality on gonad fatty acids of the Sea Urchins Paracentrotus lividus and Arbacia lixula (Echinodermata: Echinoidea). J Shellfish Res 29:517–525. https://doi.org/10.2983/035.029.0231

    Article  Google Scholar 

  10. Parrish CC (2013) Lipids in Marine Ecosystems. Int Sch Res Notices 2013:1–16. https://doi.org/10.5402/2013/604045

  11. Bergé JP, Barnathan G (2005) Fatty acids from lipids of Marine Organisms: Molecular Biodiversity, Roles as biomarkers, biologically active Compounds, and economical aspects. Adv Biochem Engin/Biotechnol 96:49–125. https://doi.org/10.1007/b135782

    Article  CAS  Google Scholar 

  12. Zhu BW, Qin L, Zhou DY et al (2010) Extraction of lipid from sea urchin (Strongylocentrotus nudus) gonad by enzyme-assisted aqueous and supercritical carbon dioxide methods. Eur Food Res Technol 230:737–743. https://doi.org/10.1007/s00217-010-1216-8

    Article  CAS  Google Scholar 

  13. Sanna R, Siliani S, Melis R et al (2017) The role of fatty acids and triglycerides in the gonads of Paracentrotus lividus from Sardinia: Growth, reproduction and cold acclimatization. Mar Environ Res 130:113–121. doi:https://doi.org/10.1016/j.marenvres.2017.07.003

  14. Merzouk SA, Saker M, Reguig KB et al (2008) N-3 polyunsaturated fatty acids modulate In-Vitro T cell function in type I Diabetic patients. Lipids 43:485–497. https://doi.org/10.1007/s11745-008-3176-3

    Article  CAS  PubMed  Google Scholar 

  15. Gonçalves AMM, Marques JC, Gonçalves F (2017) Chap. 6 Fatty acids’ profiles of aquatic organisms: revealing the impacts of environmental and anthropogenic stressors. In: Catala A (ed) Fatty acids. InTech, pp 89–117. https://doi.org/10.5772/intechopen.68544

  16. Trabelsi W, Chetoui I, Fouzai C et al (2019) Redox status and fatty acid composition of Mactra corallina digestive gland following exposure to acrylamide. Environ Sci Pollut Res 26:22197–22208. https://doi.org/10.1007/s11356-019-05492-5

    Article  CAS  Google Scholar 

  17. Maund SJ, Campbell PJ, Giddings JM et al (2011) Ecotoxicology of Synthetic Pyrethroids. Top Curr Chem 314:137–166. https://doi.org/10.1007/128_2011_260

    Article  CAS  Google Scholar 

  18. He F (1994) Chap. 6 synthetic pyrethroids. Toxicology 91:43–49. https://doi.org/10.1016/0300-483X(94)90239-9

    Article  CAS  Google Scholar 

  19. Maund SJ, Van Wijngaarden RPA, Roessink I et al (2008) Chap. 15 Aquatic fate and effects of lambda-cyhalothrin in model ecosystem experiments. In Gan (ed) Synthetic pyrethroids. Am Chem Soc Symp Ser. Washington, pp 335–354. https://doi.org/10.1021/bk-2008-0991.ch015

  20. Zhou J, Kang HM, Lee YH, Jeong CB, Park JC, Lee JS (2019) Adverse effects of a synthetic pyrethroid insecticide cypermethrin on life parameters and antioxidant responses in the marine copepods Paracyclopina nana and Tigriopus japonicus. Chemosphere 217:383–392. https://doi.org/10.1016/j.chemosphere.2018.10.217

    Article  CAS  PubMed  Google Scholar 

  21. Farag MR, Alagawany M, Bilal RM et al (2021) An overview on the potential hazards of pyrethroid insecticides in Fish, with special emphasis on Cypermethrin Toxicity. Animals 11:1–17. https://doi.org/10.3390/ani11071880

    Article  Google Scholar 

  22. Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8:381–391. https://doi.org/10.1002/etc.5620080504

    Article  CAS  Google Scholar 

  23. Kumar A, Sharma B, Pandey RS (2008) Cypermethrin and λ-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem 34:331–338. https://doi.org/10.1007/s10695-007-9192-z

    Article  CAS  PubMed  Google Scholar 

  24. United Nations Environment Programme, World Health Organization (WHO) & International Labour Organisation (1990) Cyhalothrin - Environmental health criteria 99. International Program on Chemical Safety, Geneva. https://wedocs.unep.org/20.500.11822/29411

  25. Vieira CED, Dos Reis Martinez CB (2018) The pyrethroid λ-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. Chemosphere 210:958–967. https://doi.org/10.1016/j.chemosphere.2018.07.115

    Article  CAS  PubMed  Google Scholar 

  26. Alvim TT, Martinez CB (2019) dos R Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. Mutat Res/Genet Toxicol and Environ Mutagen. 842:85–93. https://doi.org/10.1016/j.mrgentox.2018.11.011

  27. Bownik A, Kowalczyk M, Bańczerowski J (2019) Lambda-cyhalothrin affects swimming activity and physiological responses of Daphnia magna. Chemosphere 216:805–811. https://doi.org/10.1016/j.chemosphere.2018.10.192

    Article  CAS  PubMed  Google Scholar 

  28. Fouzai C, Trabelsi W, Bejaoui S et al (2020) Cellular toxicity mechanisms of lambda-cyhalothrin in Venus verrucosa as revealed by fatty acid composition, redox status and histopathological changes. Ecol Indic 108:105690. https://doi.org/10.1016/j.ecolind.2019.105690

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  30. Draper HH, Hadley M (1990) [43] Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431. https://doi.org/10.1016/0076-6879(90)86135-I

    Article  CAS  Google Scholar 

  31. Ou P, Wolff SP (1996) A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J Biochemi Biophys Meth 31:59–67. https://doi.org/10.1016/0165-022X(95)00039-T

    Article  CAS  Google Scholar 

  32. Kayali R, Çakatay U, Akçay T, Altuğ T (2006) Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem Funct 24:79–85. https://doi.org/10.1002/cbf.1190

    Article  CAS  PubMed  Google Scholar 

  33. Ellman GL (1995) Tissue sulfhydryl groups. Arch Biochem and Biophysic 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  Google Scholar 

  34. Jacques-Silva MC, Nogueira CW, Broch LC et al (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice: deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125. https://doi.org/10.1034/j.1600-0773.2001.d01-92.x

    Article  CAS  PubMed  Google Scholar 

  35. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  36. Aebi H (1984) [13] catalase in vitro. Meth Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  37. Flohé L, Günzler WA (1984) [12] assays of glutathione peroxidase. Meth Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1

    Article  Google Scholar 

  38. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  39. Cecchi G, Biasini S, Castano J (1985) Methanolyse rapide des huiles en solvants. Note de laboratoire. Rev Fr Corps Gras 32:163–164. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9170836

    CAS  Google Scholar 

  40. Martoja R, Martoja-Pierson M, Grassé PPP (1967) Initiation aux techniques de l’histologie animale. Masson et Cie, Paris, p 345

    Google Scholar 

  41. Sayeed I, Parvez S, Pandey S et al (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol Environ Saf 56:295–301. https://doi.org/10.1016/S0147-6513(03)00009-5

    Article  CAS  PubMed  Google Scholar 

  42. Erkmen B (2015) Spermiotoxicity and embryotoxicity of Permethrin in the Sea Urchin Paracentrotus lividus. Bull Environ Contam Toxicol 94:419–424. https://doi.org/10.1007/s00128-015-1482-z

    Article  CAS  PubMed  Google Scholar 

  43. Gharred T, Ezzine IK, Naija A et al (2015) Assessment of toxic interactions between deltamethrin and copper on the fertility and developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Environ Monit Assess 187:193. https://doi.org/10.1007/s10661-015-4407-8

    Article  CAS  PubMed  Google Scholar 

  44. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in Teleost Fish. Rev Fish Sci 11:107–184. https://doi.org/10.1080/713610925

    Article  CAS  Google Scholar 

  45. Neves M, Castro BB, Vidal T et al (2015) Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (Primextra® Gold TZ) and its active ingredient (S-metolachlor). Ecol Indic 53:220–230. https://doi.org/10.1016/j.ecolind.2015.01.031

    Article  CAS  Google Scholar 

  46. van der Merwe LF, Moore SE, Fulford AJ et al (2013) Long-chain PUFA supplementation in rural African infants: a randomized controlled trial of effects on gut integrity, growth, and cognitive development. Am J Clin Nutr 97:45–57. https://doi.org/10.3945/ajcn.112.042267

  47. Kabeya N, Sanz-Jorquera A, Carboni S et al (2017) Biosynthesis of Polyunsaturated fatty acids in Sea Urchins: Molecular and Functional Characterisation of three fatty acyl desaturases from Paracentrotus lividus (Lamark 1816). PLoS One 12:e0169374. https://doi.org/10.1371/journal.pone.0169374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hazel J (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227. https://doi.org/10.1016/0163-7827(90)90002-3

    Article  CAS  PubMed  Google Scholar 

  49. Arafa S, Chouaibi M, Sadok S, El Abed A (2012) The influence of season on the gonad index and biochemical composition of the Sea Urchin Paracentrotus lividus from the Golf of Tunis. Sci World J 2012:1–8. https://doi.org/10.1100/2012/815935

    Article  CAS  Google Scholar 

  50. Yin X, Chen P, Chen H et al (2017) Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Sci Rep 7:41648. https://doi.org/10.1038/srep41648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tallima H, El Ridi R (2018) Arachidonic acid: physiological roles and potential health benefits – A review. J Adv Res 11:33–41. https://doi.org/10.1016/j.jare.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  52. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374. https://doi.org/10.3390/nu2030355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zarrouk A, Ben Salem Y, Hafsa J et al (2018) 7β-hydroxycholesterol-induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg oil. Biochimie 153:210–219. https://doi.org/10.1016/j.biochi.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  54. Gassner B, Wüthrich A, Scholtysik G et al (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    CAS  PubMed  Google Scholar 

  55. Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  56. Reeg S, Grune T (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal 23:239–255. https://doi.org/10.1089/ars.2014.6062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. El-Demerdash FM (2007) Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol in Vitro 21:392–397. https://doi.org/10.1016/j.tiv.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Slaninova A, Smutna M, Modra H et al (2009) A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett 30(Suppl 1):2–12

    CAS  PubMed  Google Scholar 

  59. Ullah S, Li Z, Zain M, Ullah KS, Shah F (2019) Multiple biomarkers based appraisal of deltamethrin induced toxicity in silver carp (Hypophthalmichthys molitrix). Chemosphere 214:519–533. https://doi.org/10.1016/j.chemosphere.2018.09.145

    Article  CAS  PubMed  Google Scholar 

  60. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Euro J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  Google Scholar 

  61. Das D, Moniruzzaman M, Sarbajna A et al (2017) Effect of heavy metals on tissue-specific antioxidant response in indian major carps. Environ Sci Pollut Res 24:18010–18024. https://doi.org/10.1007/s11356-017-9415-5

    Article  CAS  Google Scholar 

  62. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain: metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Euro J Biochem 267:4912–4916. https://doi.org/10.1046/j.1432-1327.2000.01597.x

    Article  CAS  Google Scholar 

  63. Khazri A, Sellami B, Dellali M et al (2015) Acute toxicity of cypermethrin on the freshwater mussel Unio gibbus. Ecotoxicol Environ Saf 115:62–66. https://doi.org/10.1016/j.ecoenv.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  64. Au DWT (2004) The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull 48:817–834. https://doi.org/10.1016/j.marpolbul.2004.02.032

    Article  CAS  PubMed  Google Scholar 

  65. Ortiz-Zarragoitia M, Cajaraville MP (2006) Biomarkers of exposure and Reproduction-Related Effects in Mussels exposed to endocrine disruptors. Arch Environ Contam Toxicol 50:361–369. https://doi.org/10.1007/s00244-005-1082-8

    Article  CAS  PubMed  Google Scholar 

  66. Schäfer S, Köhler A (2009) Gonadal lesions of female sea urchin (Psammechinus miliaris) after exposure to the polycyclic aromatic hydrocarbon phenanthrene. Mar Environ Res 68:128–136. https://doi.org/10.1016/j.marenvres.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  67. Walker CW (1982) Nutrition of gametes. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, Netherlands, pp 449–468

    Google Scholar 

  68. Unuma T (2002) Gonadal growth and its relationship to aquaculture in sea urchins. In: Yokota Y, Matranga V, Smolenicka Z (eds) The sea urchin: from basic biology to aquaculture. Swets & Zeitlinger, Lisse, Netherlands, pp 115–127

    Google Scholar 

  69. Unuma T, Yamamoto T, Akiyama T, Shiraishi M, Ohta H (2003) Quantitative changes in yolk protein and other components in the ovary and testis of the sea urchin Pseudocentrotus depressus. J Exp Biol 206:365–372. https://doi.org/10.1242/jeb.00102

    Article  CAS  PubMed  Google Scholar 

  70. Unuma T, Sawaguchi S, Yamano K et al (2011) Accumulation of the Major yolk protein and zinc in the Agametogenic Sea Urchin gonad. Biol Bull 221:227–237. https://doi.org/10.1086/BBLv221n2p227

    Article  CAS  PubMed  Google Scholar 

  71. Marsh AG, Powell ML, Watts SA (2013) Biochemical and energy requirements of gonad development. In: Lawrence JM (ed) Sea urchins: biology and ecology, 3rd edn. Elsevier, Amsterdam, Netherlands, pp 45–57

    Chapter  Google Scholar 

Download references

Acknowledgements

We are indebted to the editor and the anonymous reviewers for their acceptance to review this work. This research did not receive any specific grant from funding agencies in the public, commercial, or notfor-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejla Soudani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouzai, C., Trabelsi, W., Bejaoui, S. et al. Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: biochemical and histopathological responses. Toxicol Res. 39, 429–441 (2023). https://doi.org/10.1007/s43188-023-00174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00174-4

Keywords

Navigation