Skip to main content

Advertisement

Log in

Hepatic alterations associated with fine particulate matter exposure

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Several studies have pointed to fine particulate matter (PM2.5) as the main responsible for air pollution toxic effects. Indeed, PM2.5 may not only cause respiratory and cardiovascular abnormalities but it may also affect other organs such as the liver. Be that as it may, only a few studies have evaluated the PM2.5 effects on hepatic tissue. Moreover, most of them have not analyzed the relationship between particles composition and toxicological effects. In this study, healthy rats were subjected to urban levels of PM2.5 particles in order to assess their structural and functional effects on the liver. During the exposure periods, mean PM2.5 concentrations were slightly higher than the value suggested by the daily guideline of the World Health Organization. The exposed rats showed a hepatic increase of Cr, Zn, Fe, Ba, Tl and Pb levels. This group also showed leukocyte infiltration, sinusoidal dilation, hydropic inclusions and alterations in carbohydrates distribution. These histologic lesions were accompanied by serological changes, such as increase of total cholesterol and triglycerides, as well as genotoxic damage in their nuclei. We also observed significant associations between several biomarkers and PM2.5 composition. Our results show that exposure to low levels of PM2.5 might cause histologic and serological changes in liver tissue, suggesting that PM2.5 toxicity is influenced not only by their concentration but also by their composition and the exposure frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PM2.5 :

Fine particulate matter

WHO:

World Health Organization

PAHs:

Polycyclic aromatic hydrocarbons

HI:

Harvard Impactor

PTFE:

Polytetrafluoroethylene

Nap:

Naphthalene

Acy:

Acenaphthylene

Acp:

Acenaphthene

Flr:

Fluorene

Phe:

Phenanthrene

Ant:

Anthracene

Flt:

Fluoranthene

Pyr:

Pyrene

B[a]A:

Benzo[a]anthracene

Chr:

Chrysene

B[b]F:

Benzo[b]fluoranthene

B[k]F:

Benzo[k]fluoranthene

B[a]P:

Benzo[a]pyrene

D[ah]A:

Dibenzo[a,h]anthracene

Ind:

Indeno[1,2,3-c,d]pyrene

B[ghi]P:

Benzo[g,h,i]perylene

PBS:

Phosphate buffered saline solution

HBSS:

Hank’s balanced saline solution

HDL:

High density lipoproteins

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

HE:

Hematoxylin/eosin stain

PAS:

Periodic acid-Schiff stain

TMV:

Tail moment value

TIM:

Total inhaled mass

EF:

Enrichment factor

References

  1. World Health Organization (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, Geneva

    Google Scholar 

  2. Riva D, Magalhaes CB, Lopes A, Lancas T, Mauad T, Malm O et al (2011) Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 23:257–267

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Tu Y, Yu Z, Lu R (2015) PM2.5 and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health 12:8187–8197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kioumourtzoglou MA, Schwartz JD, Weisskopf MG, Melly SJ, Wang Y, Dominici F, Zanobetti A (2015) Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environ Health Perspect 124:23–29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zheng Z, Zhang X, Wang J, Dandekar A, Kim H, Qiu Y et al (2015) Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models. J Hepatol 63:1397–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP et al (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS et al (2012) Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol 9:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ge CX, Qin YT, Lou DS, Li Q, Li YY, Wang ZM et al (2017) iRhom2 deficiency relieves TNF-α associated hepatic dyslipidemia in long-term PM2.5-exposed mice. Biochem Biophys Res Commun 493:1402–1409

    Article  CAS  PubMed  Google Scholar 

  9. Umezawa M, Nakamura M, El-Ghoneimy AA, Onoda A, Shaheen HM, Hori H et al (2018) Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet. Food Chem Toxicol 111:284–294

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Z, Xu X, Zhang X, Wang A, Zhang C, Hüttemann M et al (2013) Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol 58:148–154

    Article  CAS  PubMed  Google Scholar 

  11. Jackson P, Hougaard KS, Boisen AMZ, Jacobsen NR, Jensen KA, Møller P et al (2012) Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology 6:486–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department od Health and Human Services. Public Health Service

  13. Busso IT, Vera A, Mateos AC, Amarillo AC, Carreras H (2017) Histological changes in lung tissues related with sub-chronic exposure to ambient urban levels of PM2.5 in Córdoba, Argentina. Atmos Environ 167:616–624

    Article  CAS  Google Scholar 

  14. Barile FA (2013) Principles of toxicology testing. CRC Press, Boca Raton

    Book  Google Scholar 

  15. United States Environmental Protection Agency (2017) Health effects. Notebook for hazardous air pollutants

  16. Tames MF, Tavera Busso IY, Carreras HA (2019) Optimización de método para la determinación de hidrocarburos aromáticos policíclicos asociados a material particulado. Rev Int Contam Ambie 35:387–395

    Article  Google Scholar 

  17. Wise SA, Sander LC, May WE (1993) Determination of polycyclic aromatic hydrocarbons by liquid chromatography. J Chromatogr A 642(1–2):329–349

    Article  CAS  Google Scholar 

  18. Burtis CA, Bruns DE (2014) Tietz fundamentals of clinical chemistry and molecular diagnostics-e-book. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  19. Bancroft JD, Floyd AD, Suvarna SK (2013) Bancroft’s theory and practice of histological techniques. Elsevier, Amsterdam

    Google Scholar 

  20. Busso IT, Mateos AC, Juncos LI, Canals N, Carreras HA (2018) Kidney damage induced by sub-chronic fine particulate matter exposure. Environ Int 121:635–642

    Article  CAS  Google Scholar 

  21. Kumar V, Abbas AK, Aster JC (2017) Robbin’s basic pathology e-book. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  22. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  23. Slezakova K, Castro D, Delerue-Matos C, da Conceição Alvim-Ferraz M, Morais S, do Carmo Pereira M (2013) Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks. Atmos Res 127:141–147

    Article  CAS  Google Scholar 

  24. Achad M, López ML, Ceppi S, Palancar GG, Tirao G, Toselli BM (2014) Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina. Atmos Environ 92:522–532

    Article  CAS  Google Scholar 

  25. Tsapakis M, Stephanou EG (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147–156

    Article  CAS  PubMed  Google Scholar 

  26. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olcese LE, Toselli BM (2002) Some aspects of air pollution in Córdoba, Argentina. Atmos Environ 36:299–306

    Article  CAS  Google Scholar 

  28. Bermudez GM, Jasan R, Plá R, Pignata ML (2012) Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition. J Hazard Mater 213:447–456

    Article  CAS  PubMed  Google Scholar 

  29. Ferreyroa GV, Montenegro AC, Tudino MB, Lavado RS, Molina FV (2014) Time evolution of Pb(II) speciation in Pampa soil fractions. Chem Spec Bioavailab 26:210–218

    Article  CAS  Google Scholar 

  30. Litter MI, Nicolli HB, Meichtry M, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) (2014) One century of the discovery of arsenicosis in Latin America (1914–2014) As2014: proceedings of the 5th international congress on arsenic in the environment, Buenos Aires, Argentina, CRC Press

  31. Damek-Poprawa M, Sawicka-Kapusta K (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology 186:1–10

    Article  CAS  PubMed  Google Scholar 

  32. Mani U, Prasad AK, Kumar VS, Lal K, Kanojia RK, Chaudhari BP, Murthy RC (2007) Effect of fly ash inhalation on biochemical and histomorphological changes in rat liver. Ecotox Environ Safe 68:126–133

    Article  CAS  Google Scholar 

  33. Liu JGRA, Goyer RA, Waalkes MP (2008) Chapter 23: toxic effects of metals in Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  34. Wallenborn JG, Kovalcik KD, McGee JK, Landis MS, Kodavanti UP (2009) Systemic translocation of 70Zn: kinetics following intratracheal instillation in rats. Toxicol Appl Pharmacol 234:25–32

    Article  CAS  PubMed  Google Scholar 

  35. Sørensen M, Daneshvar B, Hansen M, Dragsted LO, Hertel O, Knudsen L, Loft S (2003) Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect 111:161

    Article  PubMed  PubMed Central  Google Scholar 

  36. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Lei T, Lin ZQ, Zhang HS, Yang DF, Xi ZG et al (2011) Pulmonary toxicity study in rats with PM10 and PM2.5: differential responses related to scale and composition. Atmos Environ 45:1034–1041

    Article  CAS  Google Scholar 

  38. Tan HH, Fiel MI, Sun Q, Guo J, Gordon RE, Chen LC et al (2009) Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol 6:266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Zhang W, Lu Z, Zhang F, Ding W (2017) Airborne PM2.5-induced hepatic insulin resistance by Nrf2/JNK-mediated signaling pathway. Int J Environ Res Public Health 14:787

    Article  CAS  PubMed Central  Google Scholar 

  40. Davidson RJ, Hamilton PJ (1978) High mean red cell volume: its incidence and significance in routine haematology. J Clin Pathol 31:493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riediker M, Cascio WE, Griggs TR, Herbst MC, Bromberg PA, Neas L et al (2004) Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care 169:934–940

    Article  Google Scholar 

  42. Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A et al (2011) Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomed 6:2327

    Article  CAS  Google Scholar 

  43. Tomaru M, Takano H, Inoue KI, Yanagisawa R, Osakabe N, Yasuda A et al (2007) Pulmonary exposure to diesel exhaust particles enhances fatty change of the liver in obese diabetic mice. Int J Mol Med 19:17–22

    CAS  PubMed  Google Scholar 

  44. Sharp P, Villano JS (2012) The laboratory rat. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Yeatts K, Svendsen E, Creason J, Alexis N, Herbst M, Scott J et al (2007) Coarse particulate matter (PM2.5–10) affects heart rate variability, blood lipids, and circulating eosinophils in adults with asthma. Environ Health Perspect 115:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chuang KJ, Yan YH, Cheng TJ (2010) Effect of air pollution on blood pressure, blood lipids, and blood sugar: a population-based approach. J Occup Environ Med 52:258–262

    Article  CAS  PubMed  Google Scholar 

  47. Conklin DJ (2013) From lung to liver: how does airborne particulate matter trigger NASH and systemic insulin resistance? J Hepatol 58:8–10

    Article  CAS  PubMed  Google Scholar 

  48. Vikram A, Jena G (2010) S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats. Biochem Biophys Res Commun 398:260–265

    Article  CAS  PubMed  Google Scholar 

  49. Sato S, Shirakawa H, Tomita S, Ohsaki Y, Haketa K, Tooi O et al (2008) Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol Appl Pharmacol 229:10–19

    Article  CAS  PubMed  Google Scholar 

  50. Naem E, Alcalde R, Gladysz M, Mesliniene S, Jaimungal S, Sheikh-Ali M et al (2012) Inhibition of apolipoprotein AI gene by the aryl hydrocarbon receptor: a potential mechanism for smoking-associated hypoalphalipoproteinemia. Life Sci 91:64–69

    Article  CAS  PubMed  Google Scholar 

  51. Pei Y, Halbrook RS, Li H, You J (2017) Homing pigeons as a biomonitor for atmospheric PAHs and PCBs in Guangzhou, a megacity in South China. Mar Pollut Bull 124:1048–1054

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto ST, Mantovani MS, Malaguttii MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29:148–158

    Article  CAS  Google Scholar 

  53. García-Lestón J, Méndez J, Pásaro E, Laffon B (2010) Genotoxic effects of lead: an updated review. Environ Int 36:623–636

    Article  CAS  PubMed  Google Scholar 

  54. Rodríguez-Mercado JJ, Altamirano-Lozano MA (2013) Genetic toxicology of thallium: a review. Drug Chem Toxicol 36:369–383

    Article  CAS  PubMed  Google Scholar 

  55. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8:166–175

    Article  CAS  PubMed  Google Scholar 

  56. Calder PC, Dimitriadis G, Newsholme P (2007) Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr Opin Clin Nutr 10:531–540

    Article  CAS  Google Scholar 

  57. Moran LA, Horton HR, Scrimgeour KG, Perry MD, Rawn D (2013) Principles of biochemistry. Pearson New International Edition

  58. Ramanathan G, Yin F, Speck M, Tseng CH, Brook JR, Silverman F et al (2015) Effects of urban fine particulate matter and ozone on HDL functionality. Part Fibre Toxicol 13:26

    Article  CAS  Google Scholar 

  59. Mendez R, Zheng Z, Fan Z, Rajagopalan S, Sun Q, Zhang K (2013) Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Trans Res 5:224

    CAS  Google Scholar 

  60. Jin Y, Miao W, Lin X, Wu T, Shen H, Chen S et al (2014) Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. Environ Toxicol Pharmacol 38:353–363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Luis I. Juncos for his constructive comments and English language editing.

Funding

This work received partial support from Consejo Nacional de Investigaciones Científicas y Técnicas (Grant #11220090100999) and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (Grant #30720110100529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Tavera Busso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavera Busso, I., Mateos, A.C., González Peroni, A. et al. Hepatic alterations associated with fine particulate matter exposure. Toxicol Res. 36, 139–148 (2020). https://doi.org/10.1007/s43188-019-00014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-019-00014-4

Keywords

Navigation