Skip to main content
Log in

Design and Control of Soft Robots Using Differentiable Simulation

  • Soft Robotics (M Spenko, Section Editor)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review We discuss the use of differentiable simulation for computational problems in soft robotics. This includes characterizing the mechanical behavior of soft robots, optimally controlling embedded soft actuators or active materials, and estimating the robot’s state from readings of embedded sensors. Moreover, we discuss how design optimization can help to optimally place soft actuators and sensors. Recent Findings We expatiate on the adoption of simulation and optimization tools in the process of designing and controlling soft robots. We include a discussion of rigid-flexible systems and the use of differentiable simulation in combination with machine learning. Summary We review the state of the art in the computational modeling of soft robots and provide a summary of the required mathematical tools. We also review several open questions where computation could help to move the field forward, and discuss the role of differentiable simulation in managing the ever-growing design complexity of next-generation soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We use dab and ab to denote the total and partial derivatives of a vector-valued function b with respect to a parameter vector a. We rely on the numerator layout in our derivations.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Suzumori K, Iikura S, Tanaka H. Development of flexible microactuator and its applications to robotic mechanisms. Proceedings. 1991 IEEE International conference on robotics and automation. IEEE Computer Society; 1991. p. 1622–3.

  2. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, et al. Multigait soft robot. Proc Natl Acad Sci 2011 ;108(51):20400–3.

    Article  Google Scholar 

  3. Chen F, Wang MY. Design optimization of soft robots: a review of the state of the art. IEEE Robot Autom Mag 2020;27(4):27–43.

    Article  Google Scholar 

  4. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature 2015;521(7553): 467–75.

    Article  Google Scholar 

  5. Yang Y, Wu Y, Li C, Yang X, Chen W. Flexible actuators for soft robotics. Adv Intell Syst 2020;2(1):1900077.

    Article  Google Scholar 

  6. Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P. Soft robot arm inspired by the octopus. Adv Robot 2012;26(7):709–27.

    Article  Google Scholar 

  7. Mazzolai B, Laschi C. A vision for future bioinspired and biohybrid robots. Sci Robot. 2020;5(38).

  8. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016;536 (7617): 451–5.

    Article  Google Scholar 

  9. Belytschko T, Liu W, Moran B. Nonlinear finite elements for continua and structures, 2nd ed. New York: Wiley; 2013.

    MATH  Google Scholar 

  10. Schumacher C, Knoop E, Bächer M. Simulation-ready characterization of soft robotic materials. IEEE Robot Autom Lett 2020 ;5(3):3775–82.

    Article  Google Scholar 

  11. •• Maloisel G, Knoop E, Schumacher C, Bächer M. Automated routing of muscle fibers for soft robots. IEEE Transactions on Robotics (T-RO). 2021. Automated design optimization of artificial muscle fiber routings, using MLS to permit fibers to move smoothly through the underlying simulation mesh.

  12. • Hahn D, Banzet P, Bern JM, Coros S. Real2sim: Visco-elastic parameter estimation from dynamic motion. ACM Trans Graph (TOG) 2019;38(6):1–13.

    Article  Google Scholar 

  13. Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Adv Sci 2018;5(9):1800541.

    Article  Google Scholar 

  14. •• Tapia J, Knoop E, Mutný M, Otaduy MA, Bächer M. MakeSense: automated sensor design for proprioceptive soft robots. Soft Robot. 2020;7(3). Automated design of networks of embedded soft strain sensors, formulated using a three-level nesting: differentiable simulation within state estimation within sensor selection.

  15. Liu Y, Wang MY. Topology design of a conforming gripper with distributed compliance via a level set method. 2014 IEEE international conference on robotics and biomimetics (ROBIO 2014). IEEE; 2014. p. 2191–6.

  16. Nocedal J, Wright SJ. Numerical optimization, 2nd ed. New York: Springer; 2006.

    MATH  Google Scholar 

  17. Bradley AM. PDE-constrained optimization and the adjoint method. Stanford University; 2010.

  18. Cao Y, Li S, Petzold L. Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software. J Comput Appl Math 2002;149(1):171–91.

    Article  MathSciNet  Google Scholar 

  19. Babuška I, Banerjee U, Osborn JE. Meshless and generalized finite element methods: a survey of some major results. Meshfree methods for partial differential equations. In: Griebel M and Schweitzer M A, editors. Springer: Berlin; 2003. p. 1–20.

  20. Hafner C, Schumacher C, Knoop E, Auzinger T, Bickel B, Bächer M. X-CAD: optimizing CAD models with extended finite elements. ACM Trans Graph (TOG) 2019;38(6):1–15.

    Article  Google Scholar 

  21. Schneider T, Hu Y, Dumas J, Gao X, Panozzo D, Zorin D. Decoupling simulation accuracy from mesh quality. ACM Trans Graph. 2018;37(6).

  22. Geilinger M, Hahn D, Zehnder J, Bächer M, Thomaszewski B, Coros S. ADD: analytically differentiable dynamics for multi-body systems with frictional contact. ACM Trans Graph (TOG) 2020; 39(6):1–15.

    Article  Google Scholar 

  23. Todorov E. Convex and analytically-invertible dynamics with contacts and constraints: theory and implementation in MuJoCo. 2014 IEEE international conference on robotics and automation (ICRA); 2014. p. 6054–61.

  24. Xu H, Knoop E, Coros S, Bächer M. Bend-it: design and fabrication of kinetic wire characters. ACM Trans Graph (TOG) 2018;37(6):1–15.

    Article  Google Scholar 

  25. Hoshyari S, Xu H, Knoop E, Coros S, Bächer M. Vibration-minimizing motion retargeting for robotic characters. ACM Trans Graph (TOG) 2019;38(4):1–14.

    Article  Google Scholar 

  26. Heiden E, Millard D, Coumans E, Sheng Y, Sukhatme GS. NeuralSim: augmenting differentiable simulators with neural networks. 2020. arXiv:201104217.

  27. Du T, Wu K, Ma P, Wah S, Spielberg A, Rus D, et al. DiffPD: differentiable projective dynamics with contact. 2021. arXiv:210105917.

  28. • Spielberg A, Zhao A, Hu Y, Du T, Matusik W, Rus D. Learning-in-the-loop optimization: end-to-end control and co-design of soft robots through learned deep latent representations. Adv Neural Inf Process Syst 2019;32:8284–94.

    Google Scholar 

  29. • Hu Y, Liu J, Spielberg A, Tenenbaum JB, Freeman WT, Wu J, et al. Chainqueen: a real-time differentiable physical simulator for soft robotics. 2019 International conference on robotics and automation (ICRA). IEEE; 2019. p. 6265–71.

  30. Bern JM, Schnider Y, Banzet P, Kumar N, Coros S. Soft robot control with a learned differentiable model. 2020 3rd IEEE international conference on soft robotics (RoboSoft). IEEE; 2020. p. 417–23.

  31. Chen B, Wang N, Zhang X, Chen W. Design of dielectric elastomer actuators using topology optimization on electrodes. Smart Mater Struct 2020;29(7):075029.

    Article  Google Scholar 

  32. Chen Y, Xia Z, Zhao Q. Optimal design of soft pneumatic bending actuators subjected to design-dependent pressure loads. IEEE/ASME Trans Mechatron 2019;24(6):2873–84.

    Article  Google Scholar 

  33. Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M. Microstructures to control elasticity in 3D printing. ACM Trans Graph (TOG) 2015;34(4):1–13.

    Article  Google Scholar 

  34. Liu CH, Chen TL, Chiu CH, Hsu MC, Chen Y, Pai TY, et al. Optimal design of a soft robotic gripper for grasping unknown objects. Soft Robot 2018;5(4):452–65.

    Article  Google Scholar 

  35. Zhang H, Kumar AS, Chen F, Fuh JY, Wang MY. Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands. IEEE/ASME Trans Mechatron 2018;24 (1):120–31.

    Article  Google Scholar 

  36. Zhang H, Wang MY, Chen F, Wang Y, Kumar AS, Fuh JY. Design and development of a soft gripper with topology optimization. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2017. p. 6239–44.

  37. Chen F, Liu K, Wang Y, Zou J, Gu G, Zhu X. Automatic design of soft dielectric elastomer actuators with optimal spatial electric fields. IEEE Trans Robot 2019;35(5):1150–65.

    Article  Google Scholar 

  38. Chen F, Xu W, Zhang H, Wang Y, Cao J, Wang MY, et al. Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot Autom Lett 2018;3 (3):2463–70.

    Article  Google Scholar 

  39. Zehnder J, Knoop E, Bächer M, Thomaszewski B. Metasilicone: design and fabrication of composite silicone with desired mechanical properties. ACM Trans Graph (TOG) 2017;36(6):1–13.

    Article  Google Scholar 

  40. Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D. Elastic textures for additive fabrication. ACM Trans Graph (TOG) 2015;34(4):1–12.

    Article  Google Scholar 

  41. Morzadec T, Marcha D, Duriez C. Toward shape optimization of soft robots. 2019 2nd IEEE international conference on soft robotics (RoboSoft). IEEE; 2019. p. 521–6.

  42. Cheney N, Bongard J, Lipson H. Evolving soft robots in tight spaces. Proceedings of the 2015 annual conference on genetic and evolutionary computation; 2015. p. 935–42.

  43. Corucci F, Cheney N, Giorgio-Serchi F, Bongard J, Laschi C. Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Robot 2018;5(4):475–95.

    Article  Google Scholar 

  44. Bern JM, Kumagai G, Coros S. Fabrication, modeling, and control of plush robots. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2017. p. 3739–46.

  45. • Bern JM, Banzet P, Poranne R, Coros S. Trajectory optimization for cable-driven soft robot locomotion. Robotics: Science and Systems; 2019.

  46. Coevoet E, Escande A, Duriez C. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. 2019 2nd IEEE international conference on soft robotics (RoboSoft). IEEE; 2019. p. 739–45.

  47. Pérez J, Thomaszewski B, Coros S, Bickel B, Canabal JA, Sumner R, et al. Design and fabrication of flexible rod meshes. ACM Trans Graph (TOG) 2015;34(4):1–12.

    Article  Google Scholar 

  48. Megaro V, Zehnder J, Bächer M, Coros S, Gross M, Thomaszewski B. A computational design tool for compliant mechanisms. ACM Trans Graph. 2017;36(4).

  49. Skouras M, Thomaszewski B, Bickel B, Gross M. Computational design of rubber balloons. Computer graphics forum. Wiley Online Library; 2012. p. 835–44.

  50. Dämmer G, Gablenz S, Hildebrandt A, Major Z. Design and shape optimization of PolyJet bellows actuators. 2018 IEEE international conference on soft robotics (RoboSoft). IEEE; 2018. p. 282–7.

  51. Skouras M, Thomaszewski B, Coros S, Bickel B, Gross M. Computational design of actuated deformable characters. ACM Trans Graph (TOG) 2013;32(4):1–10.

    Article  Google Scholar 

  52. Bern JM, Chang KH, Coros S. Interactive design of animated plushies. ACM Trans Graph (TOG) 2017;36(4):1–11.

    Article  Google Scholar 

  53. Megaro V, Knoop E, Spielberg A, Levin DI, Matusik W, Gross M, et al. Designing cable-driven actuation networks for kinematic chains and trees. Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation; 2017. p. 1–10.

  54. Ma LK, Zhang Y, Liu Y, Zhou K, Tong X. Computational design and fabrication of soft pneumatic objects with desired deformations. ACM Trans Graph (TOG) 2017;36(6):1–12.

    Article  Google Scholar 

  55. Navarro SE, Nagels S, Alagi H, Faller LM, Goury O, Morales-Bieze T, et al. A model-based sensor fusion approach for force and shape estimation in soft robotics. IEEE Robot Autom Lett 2020;5 (4):5621–8.

    Article  Google Scholar 

  56. Tian J, Zhao X, Gu XD, Chen S. Designing ferromagnetic soft robots (FerroSoRo) with level-set-based multiphysics topology optimization. 2020 IEEE international conference on robotics and automation (ICRA). IEEE; 2020. p. 10067–74.

  57. Lum GZ, Ye Z, Dong X, Marvi H, Erin O, Hu W, et al. Shape-programmable magnetic soft matter. Proc Natl Acad Sci 2016;113(41):E6007–15.

    Article  Google Scholar 

  58. Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000;287(5454):836–9.

    Article  Google Scholar 

  59. Taghavi M, Helps T, Rossiter J. Electro-ribbon actuators and electro-origami robots. Sci Robot. 2018;3(25).

  60. Duduta M, Clarke DR, Wood RJ. A high speed soft robot based on dielectric elastomer actuators. 2017 IEEE international conference on robotics and automation (ICRA). IEEE; 2017. p. 4346–51.

  61. Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y, El Haitami A, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci Robot. 2019;4 (37).

  62. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, et al. Artificial muscles from fishing line and sewing thread. Science 2014;343(6173):868–72.

    Article  Google Scholar 

  63. Kim K, Cho KH, Jung HS, Yang SY, Kim Y, Park JH, et al. Double helix twisted and coiled soft actuator from spandex and nylon. Adv Eng Mater 2018;20(11):1800536.

    Article  Google Scholar 

  64. Li G, Liu S, Wang L, Zhu R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci Robot. 2020;5(49).

  65. Ward-Cherrier B, Pestell N, Cramphorn L, Winstone B, Giannaccini ME, Rossiter J, et al. The tactip family: soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft Robot 2018;5(2): 216–27.

    Article  Google Scholar 

  66. Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, et al. A resilient, untethered soft robot. Soft Robot 2014;1(3):213–23.

    Article  Google Scholar 

  67. Katzschmann RK, DelPreto J, MacCurdy R, Rus D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot. 2018;3(16).

  68. Ramezani A, Shi X, Chung SJ, Hutchinson S. Bat Bot (B2), a biologically inspired flying machine. 2016 IEEE international conference on robotics and automation (ICRA). IEEE; 2016 . p. 3219–26.

  69. Hawkes EW, Blumenschein LH, Greer JD, Okamura AM. A soft robot that navigates its environment through growth. Sci Robot. 2017;2(8).

  70. Gorissen B, Melancon D, Vasios N, Torbati M, Bertoldi K. Inflatable soft jumper inspired by shell snapping. Sci Robot. 2020;5(42).

  71. Rus D, Tolley MT. Design, fabrication and control of origami robots. Nat Rev Mater 2018;3 (6):101–12.

    Article  Google Scholar 

  72. Kim W, Byun J, Kim JK, Choi WY, Jakobsen K, Jakobsen J, et al. Bioinspired dual-morphing stretchable origami. Sci Robot. 2019;4(36).

  73. Baek SM, Yim S, Chae SH, Lee DY, Cho KJ. Ladybird beetle–inspired compliant origami. Sci Robot. 2020;5(41).

  74. Goury O, Duriez C. Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans Robot 2018;34(6):1565–76.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are employed by The Walt Disney Company. The Walt Disney Company owns patents that are broadly relevant to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Bächer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Soft Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bächer, M., Knoop, E. & Schumacher, C. Design and Control of Soft Robots Using Differentiable Simulation. Curr Robot Rep 2, 211–221 (2021). https://doi.org/10.1007/s43154-021-00052-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-021-00052-7

Keywords

Navigation