Skip to main content

Advertisement

Log in

Nanomanipulation in Biomedical Applications

  • Nanorobotics and Microrobotics (A Ferreira, Section Editor)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Progress in nanorobotics over the past decades has dramatically extended our ability to explore the world down to individual molecules/atoms. As an enabling technology, nanorobotic manipulation provides the capability to the control of position and orientation of an object. This paper overviews the state-of-the-art of the advancements of nanomanipulation and focuses on its application in biomedicine.

Recent Findings

As the literature is showing, recent progresses on nanomanipulation have mainly been enabled by such supporting techniques as super-resolution imaging and local magnetic/plasmonic actuation, and focused on the exploration of molecular properties on an individual non-statistical basis, which includes the characterization of mechanical properties, conformational transitions, position/posture adjustment, intra-/intermolecular interactions of bio-objects, and so on.

Summary

Following a review focusing on recent advances in applications of nanomanipulation based on various platforms and processes (including both probe and field-based approaches) into biomedicine, future perspectives and potential trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dong LX, Nelson BJ. Nanotechnology for advanced life science automation. In: Zhang MJ, Nelson BJ, Felder RA, editors. Life Science Automation: Fundamentals and Applications. 1st ed: Adtech; 2007. p. 469–90.

  2. Li M, Xi N, Wang Y, Liu L. Progress in nanorobotics for advancing biomedicine. IEEE Trans Biomed Eng. 2020;68:130–47. https://doi.org/10.1109/TBME.2020.2990380.

    Article  Google Scholar 

  3. Wang JL, Duboc C, Wu Q, Ochi T, Liang S, Tsutakawa SE, et al. Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat Struct Mol Biol. 2018;25(6):482–7.

    Google Scholar 

  4. Fan J, Leroux-Coyau M, Savery NJ, Strick TR. Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature. 2016;536(7615):234–7.

    Google Scholar 

  5. Fukuda T, Arai F, Dong LX. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE. 2003;91(11):1803–18.

    Google Scholar 

  6. Adrian M, Dubochet J, Lepault J, McDowall AW. Cryo-electron microscopy of viruses. Nature. 1984;308(5954):32–6.

    Google Scholar 

  7. Li YZ, Li YB, Pei AL, Yan K, Sun YM, Wu CL, et al. Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy. Science. 2017;358(6362):506–10. https://doi.org/10.1126/science.aam6014.

    Article  Google Scholar 

  8. Park J, Elmlund H, Ercius P, Yuk JM, Limmer DT, Chen Q, et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science. 2015;349(6245):290–5. https://doi.org/10.1126/science.aab1343.

    Article  Google Scholar 

  9. Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci Appl. 2017;6(9):e17039-e.

    Google Scholar 

  10. Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near-field scanning optical microscopy (NSOM)-development and biophysical applications. Biophys J. 1986;49(1):269–79. https://doi.org/10.1016/s0006-3495(86)83640-2.

    Article  Google Scholar 

  11. Zhuang XW, Bartley LE, Babcock HP, Russell R, Ha TJ, Herschlag D, et al. A single-molecule study of RNA catalysis and folding. Science. 2000;288(5473):2048–51. https://doi.org/10.1126/science.288.5473.2048.

    Article  Google Scholar 

  12. Zhuang XW. Unraveling DNA condensation with optical tweezers. Science. 2004;305(5681):188–90. https://doi.org/10.1126/science.1100603.

    Article  Google Scholar 

  13. Kosuri P, Altheimer BD, Dai MJ, Yin P, Zhuang XW. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature. 2019;572(7767):136–40. https://doi.org/10.1038/s41586-019-1397-7.

    Article  Google Scholar 

  14. Knoll M, Ruska E. Das elektronenmikroskop. Z Phys. 1932;78(5-6):318–39.

    Google Scholar 

  15. Von Ardenne M. Das elektronen-rastermikroskop. Z Phys. 1938;109(9-10):553–72.

    Google Scholar 

  16. Feynman RP. There’s plenty of room at the bottom. Caltech’s Engineering and Science. 1960;23:22–36.

  17. Binnig G, Rohrer H. Scanning tunneling microscopy. Surf Sci. 1983;126(1-3):236–44.

    Google Scholar 

  18. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930–3.

    Google Scholar 

  19. Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235(4795):1517–20.

    Google Scholar 

  20. Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunnelling microscope. Nature. 1990;344(6266):524–6.

    Google Scholar 

  21. Smith SB, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992;258(5085):1122–6.

    Google Scholar 

  22. Florin E-L, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science. 1994;264(5157):415–7.

    Google Scholar 

  23. Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature. 1998;395(6704):780–3.

    Google Scholar 

  24. Dong LX, Arai F, Fukuda T. 3D Nanorobotic manipulations of multi-walled carbon nanotubes. Proc of 2001 IEEE Int Conf on Robotics and Automation (ICRA2001). Seoul, South Korea: IEEE; 2001. p. 632-7.

  25. Guthold M, Falvo MR, Matthews WG, Paulson S, Washburn S, Erie DA, et al. Controlled manipulation of molecular samples with the nanomanipulator. IEEE/ASME Trans Mechatron. 2000;5(2):189–98.

    Google Scholar 

  26. Sitti M, Aruk B, Shintani H, Hashimoto H. Development of a scaled teleoperation system for nano scale interaction and manipulation. Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation (Cat No 01CH37164): IEEE; 2001. p. 860-7.

  27. Nakajima M, Arai F, Dong L, Nagai M, Fukuda T. Hybrid nanorobotic manipulation system inside scanning electron microscope and transmission electron microscope. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat No 04CH37566): IEEE; 2004. p. 589-94.

  28. Li G, Xi N, Yu M, Fung W-K. Development of augmented reality system for AFM-based nanomanipulation. IEEE/ASME Trans Mechatron. 2004;9(2):358–65.

    Google Scholar 

  29. Gore J, Bryant Z, Nöllmann M, Le MU, Cozzarelli NR, Bustamante C. DNA overwinds when stretched. Nature. 2006;442(7104):836–9.

    Google Scholar 

  30. Dong L, Tao X, Zhang L, Zhang X, Nelson BJ. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 2007;7(1):58–63.

    Google Scholar 

  31. Righini M, Zelenina AS, Girard C, Quidant R. Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 2007;3(7):477–80.

    Google Scholar 

  32. Xie H, Haliyo D, Régnier S. Parallel imaging/manipulation force microscopy. Appl Phys Lett. 2009;94(15):153106.

    Google Scholar 

  33. Celedon A, Nodelman IM, Wildt B, Dewan R, Searson P, Wirtz D, et al. Magnetic tweezers measurement of single molecule torque. Nano Lett. 2009;9(4):1720–5.

    Google Scholar 

  34. Mandal S, Serey X, Erickson D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett. 2010;10(1):99–104.

    Google Scholar 

  35. Tao X, Fan Z, Nelson BJ, Dharuman G, Zhang W, Dong L, et al. Internal electron tunneling enabled ultrasensitive position/force peapod sensors. Nano Lett. 2015;15(11):7281–7.

    Google Scholar 

  36. • Meng X, Zhang H, Song J, Fan X, Sun L, Xie H. Broad modulus range nanomechanical mapping by magnetic-drive soft probes. Nat Commun. 2017;8(1):1–10 Findings from this study suggest that a magnetic drive peak force modulation AFM is developed to broaden the dynamic range of the probe with direct cantilever excitation. This approach can be particularly useful for analysing heterogeneous samples with large elastic modulus variations in multi-environments.

    Google Scholar 

  37. Lin L, Wang M, Peng X, Lissek EN, Mao Z, Scarabelli L, et al. Opto-thermoelectric nanotweezers. Nat Photonics. 2018;12(4):195–201.

    Google Scholar 

  38. •• Kosuri P, Altheimer BD, Dai M, Yin P, Zhuang X. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature. 2019;572(7767):136–40 Findings from this study suggest that origami-rotor-based imaging and tracking (ORBIT), a method that uses fluorescently labelled DNA origami rotors to track DNA rotation at the single-molecule level with a time resolution of milliseconds. Author envisages that ORBIT will enable studies of a wide range of interactions between proteins and DNA.

    Google Scholar 

  39. •• Hong C, Yang S, Ndukaife JC. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol. 2020:1–6 Findings from this study suggest that opto-thermo-electrohydrodynamic tweezers enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus, which open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules.

  40. Dong L, Arai F, Fukuda T. 3D nanorobotic manipulation of nano-order objects inside SEM. MHS2000 Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat No 00TH8530): IEEE; 2000. p. 151-6.

  41. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637–40.

    Google Scholar 

  42. Hoshika S, Leal NA, Kim M-J, Kim M-S, Karalkar NB, Kim H-J, et al. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science. 2019;363(6429):884–7.

    Google Scholar 

  43. Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, et al. Network-based prediction of protein interactions. Nat Commun. 2019;10(1):1–8.

    Google Scholar 

  44. Wamhoff E-C, Banal JL, Bricker WP, Shepherd TR, Parsons MF, Veneziano R, et al. Programming structured DNA assemblies to probe biophysical processes. Annu Rev Biophys. 2019;48:395–419.

    Google Scholar 

  45. Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical forces: from fundamental to biological applications. Adv Mater. 2020;32(37):2001994.

    Google Scholar 

  46. Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 2011;11(21):3656–62.

    Google Scholar 

  47. Choudhary D, Mossa A, Jadhav M, Cecconi C. Bio-molecular applications of recent developments in optical tweezers. Biomolecules. 2019;9(1):23.

    Google Scholar 

  48. Sarkar R, Rybenkov VV. A guide to magnetic tweezers and their applications. Front Phys. 2016;4:48.

    Google Scholar 

  49. Kriegel F, Ermann N, Lipfert J. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J Struct Biol. 2017;197(1):26–36.

    Google Scholar 

  50. Xin Q, Li P, He Y, Shi C, Qiao Y, Bian X, et al. Magnetic tweezers for the mechanical research of DNA at the single molecule level. Anal Methods. 2017;9(39):5720–30.

    Google Scholar 

  51. Cai J. Atomic Force Microscopy in Molecular and Cell Biology. Springer Nature Singapore Pte Ltd; 2018.

  52. Roos WH. AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol Elsevier. 2018:145–52.

  53. Li M, Dang D, Xi N, Wang Y, Liu L. A review of nanoscale characterizing individual DNA behaviors using atomic force microscopy. IEEE Trans Nanotechnol. 2018;17(5):920–33.

    Google Scholar 

  54. Yoo D, Gurunatha KL, Choi H-K, Mohr DA, Ertsgaard CT, Gordon R, et al. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Lett. 2018;18(6):3637–42.

    Google Scholar 

  55. Yang AH, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature. 2009;457(7225):71–5.

    Google Scholar 

  56. Shoji T, Saitoh J, Kitamura N, Nagasawa F, Murakoshi K, Yamauchi H, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J Am Chem Soc. 2013;135(17):6643–8.

    Google Scholar 

  57. Berthelot J, Aćimović S, Juan M, Kreuzer M, Renger J, Quidant R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol. 2014;9(4):295–9.

    Google Scholar 

  58. Hacohen N, Ip CJ, Gordon R. Analysis of egg white protein composition with double nanohole optical tweezers. Acs Omega. 2018;3(5):5266–72.

    Google Scholar 

  59. Bazoni R, Lima C, Ramos E, Rocha M. Force-dependent persistence length of DNA–intercalator complexes measured in single molecule stretching experiments. Soft Matter. 2015;11(21):4306–14.

    Google Scholar 

  60. Crisafuli F, Ramos E, Rocha M. Characterizing the interaction between DNA and GelRed fluorescent stain. Eur Biophys J. 2015;44(1-2):1–7.

    Google Scholar 

  61. Simoncelli S, Johnson S, Kriegel F, Lipfert J, Feldmann J. Stretching and heating single dna molecules with optically trapped gold–silica janus particles. Acs Photonics. 2017;4(11):2843–51.

    Google Scholar 

  62. Newton MD, Taylor BJ, Driessen RP, Roos L, Cvetesic N, Allyjaun S, et al. DNA stretching induces Cas9 off-target activity. Nat Struct Mol Biol. 2019;26(3):185–92.

    Google Scholar 

  63. Shon MJ, Cohen AE. Nano-mechanical measurements of protein-DNA interactions with a silicon nitride pulley. Nucleic Acids Res. 2016;44(1):e7-e.

    Google Scholar 

  64. Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, et al. The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys J. 2019;116(2):196–204.

    Google Scholar 

  65. Shon MJ, Rah S-H, Yoon T-Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci Adv. 2019;5(6):eaav1697.

    Google Scholar 

  66. Fu H, Zhang C, Qiang X-W, Yang Y-J, Dai L, Tan Z-J, et al. Opposite effects of high-valent cations on the elasticities of DNA and RNA duplexes revealed by magnetic tweezers. Phys Rev Lett. 2020;124(5):058101.

    Google Scholar 

  67. Li W, Wong WJ, Lim CJ, Ju H-P, Li M, Yan J, et al. Complex kinetics of DNA condensation revealed through DNA twist tracing. Phys Rev E. 2015;92(2):022707.

    Google Scholar 

  68. Pastrana CL, Carrasco C, Akhtar P, Leuba SH, Khan SA, Moreno-Herrero F. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules. Nucleic Acids Res. 2016;44(18):8885–96.

    Google Scholar 

  69. Kriegel F, Ermann N, Forbes R, Dulin D, Dekker NH, Lipfert J. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res. 2017;45(10):5920–9.

    Google Scholar 

  70. Kriegel F, Matek C, Dršata T, Kulenkampff K, Tschirpke S, Zacharias M, et al. The temperature dependence of the helical twist of DNA. Nucleic Acids Res. 2018;46(15):7998–8009.

    Google Scholar 

  71. Martínez-Santiago CJ, Quiñones E. On matching the magnetic torque exerted by a rotating magnetic field to the torsional stiffness of braided DNA molecules for torque estimations. Chem Phys. 2019;519:74–84.

    Google Scholar 

  72. Stephenson W, Wan G, Tenenbaum SA, Li PT. Nanomanipulation of single RNA molecules by optical tweezers. J Visual Exp. 2014;(90):e51542.

  73. Neupane K, Foster DA, Dee DR, Yu H, Wang F, Woodside MT. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 2016;352(6282):239–42.

    Google Scholar 

  74. Jahn M, Buchner J, Hugel T, Rief M. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Proc Natl Acad Sci. 2016;113(5):1232–7.

    Google Scholar 

  75. Wruck F, Katranidis A, Nierhaus KH, Büldt G, Hegner M. Translation and folding of single proteins in real time. Proc Natl Acad Sci. 2017;114(22):E4399–E407.

    Google Scholar 

  76. Jahn M, Tych K, Girstmair H, Steinmaßl M, Hugel T, Buchner J, et al. Folding and domain interactions of three orthologs of Hsp90 studied by single-molecule force spectroscopy. Structure. 2018;26(1):96–105. e4.

    Google Scholar 

  77. Liu K, Chen X, Kaiser CM. Energetic dependencies dictate folding mechanism in a complex protein. Proc Natl Acad Sci. 2019;116(51):25641–8.

    Google Scholar 

  78. Liu K, Maciuba K, Kaiser CM. The ribosome cooperates with a chaperone to guide multi-domain protein folding. Mol Cell. 2019;74(2):310–9. e7.

    Google Scholar 

  79. Bustamante C, Alexander L, Maciuba K, Kaiser CM. Single-molecule studies of protein folding with optical tweezers. Annu Rev Biochem. 2020;89:443–70.

    Google Scholar 

  80. Chen H, Yuan G, Winardhi RS, Yao M, Popa I, Fernandez JM, et al. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J Am Chem Soc. 2015;137(10):3540–6.

    Google Scholar 

  81. Min D, Jefferson RE, Bowie JU, Yoon T-Y. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol. 2015;11(12):981–7.

    Google Scholar 

  82. Guttula D, Yao M, Baker K, Yang L, Goult BT, Doyle PS, et al. Calcium-mediated protein folding and stabilization of Salmonella biofilm-associated protein A. J Mol Biol. 2019;431(2):433–43.

    Google Scholar 

  83. Eckels EC, Tapia-Rojo R, Rivas-Pardo JA, Fernández JM. The work of titin protein folding as a major driver in muscle contraction. Annu Rev Physiol. 2018;80:327–51.

    Google Scholar 

  84. Cheng Y, Tang Q, Li Y, Zhang Y, Zhao C, Yan J, et al. Folding/unfolding kinetics of G-quadruplexes upstream of the P1 promoter of the human BCL-2 oncogene. J Biol Chem. 2019;294(15):5890–5.

    Google Scholar 

  85. Tapia-Rojo R, Eckels EC, Fernández JM. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proc Natl Acad Sci. 2019;116(16):7873–8.

    Google Scholar 

  86. Löf A, Walker PU, Sedlak SM, Gruber S, Obser T, Brehm MA, et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc Natl Acad Sci. 2019;116(38):18798–807.

    Google Scholar 

  87. Walder R, Van Patten WJ, Ritchie DB, Montange RK, Miller TW, Woodside MT, et al. High-precision single-molecule characterization of the folding of an HIV RNA hairpin by atomic force microscopy. Nano Lett. 2018;18(10):6318–25.

    Google Scholar 

  88. De Sancho D, Schonfelder J, Best RB, Perez-Jimenez R, Munoz V. Instrumental effects in the dynamics of an ultrafast folding protein under mechanical force. J Phys Chem B. 2018;122(49):11147–54.

    Google Scholar 

  89. Cao M, Deng L, Xu H. Study of PNA–DNA hybridization by AFM-based single-molecule force spectroscopy. Colloids Surf A Physicochem Eng Asp. 2015;470:46–51.

    Google Scholar 

  90. Suzuki Y, Endo M, Sugiyama H. Studying RNAP–promoter interactions using atomic force microscopy. Methods. 2015;86:4–9.

    Google Scholar 

  91. Murugesapillai D, Bouaziz S, Maher LJ, Israeloff NE, Cameron CE, Williams MC. Accurate nanoscale flexibility measurement of DNA and DNA–protein complexes by atomic force microscopy in liquid. Nanoscale. 2017;9(31):11327–37.

    Google Scholar 

  92. Kasas S, Dietler G. DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biology Elsevier. 2018;73:231–9.

    Google Scholar 

  93. Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biology Elsevier. 2018;73:220–30.

    Google Scholar 

  94. Ogawa T, Yogo K, Furuike S, Sutoh K, Kikuchi A, Kinosita K. Direct observation of DNA overwinding by reverse gyrase. Proc Natl Acad Sci. 2015;112(24):7495–500.

    Google Scholar 

  95. Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, et al. Single molecule studies of helicases with magnetic tweezers. Methods. 2016;105:3–15.

    Google Scholar 

  96. Seol Y, Strub M-P, Neuman KC. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis. Methods. 2016;105:119–27.

    Google Scholar 

  97. Pinto C, Kasaciunaite K, Seidel R, Cejka P. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. Elife. 2016;5:e18574.

    Google Scholar 

  98. Salerno D, Beretta GL, Zanchetta G, Brioschi S, Cristofalo M, Missana N, et al. Platinum-based drugs and DNA interactions studied by single-molecule and bulk measurements. Biophys J. 2016;110(10):2151–61.

    Google Scholar 

  99. Bernal W, Silva E, Rocha M. Unraveling the physical chemistry and the mixed binding modes of complex DNA ligands by single molecule stretching experiments. RSC Adv. 2016;6(107):105631–7.

    Google Scholar 

  100. Berghuis BA, Köber M, van Laar T, Dekker NH. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods. 2016;105:90–8.

    Google Scholar 

  101. Ma L, Cai Y, Li Y, Jiao J, Wu Z, O’shaughnessy B, et al. Single-molecule force spectroscopy of protein-membrane interactions. Elife. 2017;6:e30493.

    Google Scholar 

  102. Okoniewski SR, Uyetake L, Perkins TT. Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA. Nucleic Acids Res. 2017;45(18):10775–82.

    Google Scholar 

  103. Hao Y, Canavan C, Taylor SS, Maillard RA. Integrated method to attach DNA handles and functionally select proteins to study folding and protein-ligand interactions with optical tweezers. Sci Rep-Uk. 2017;7(1):1–8.

    Google Scholar 

  104. Hu S, Xie H, Wei T, Chen S, Sun D. Automated indirect transportation of biological cells with optical tweezers and a 3D printed microtool. Appl Sci. 2019;9(14):2883.

    Google Scholar 

  105. Xie M, Li X, Wang Y, Liu Y, Sun D. Saturated PID control for the optical manipulation of biological cells. Ieee T Contr Syst T. 2017;26(5):1909–16.

    Google Scholar 

  106. Li X, Yang H, Huang H, Sun D. A switching controller for high speed cell transportation by using a robot-aided optical tweezers system. Automatica. 2018;89:308–15.

    MathSciNet  MATH  Google Scholar 

  107. Wu Y, Sun D, Huang W, Li Y. Path planning in automated manipulation of biological cells with optical tweezers. 2009 IEEE International Conference on Control and Automation: IEEE; 2009. p. 2021-6.

  108. Hou C, Wang Y, Yang L, Li B, Cao Z, Zhang Q, et al. Position sensitivity of optical nano-antenna arrays on optoelectronic devices. Nano Energy. 2018;53:734–44.

    Google Scholar 

Download references

Funding

This work is partially supported by the National Key Research and Development Program of China (grant no. 2018YFB1304902), the National Natural Science Foundation of China (grant no. U1813211), and General Research Fund of Hong Kong (project nos. 11219419 and 11213720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Dong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanorobotics and Microrobotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Sun, D. & Dong, L. Nanomanipulation in Biomedical Applications. Curr Robot Rep 2, 133–145 (2021). https://doi.org/10.1007/s43154-021-00047-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-021-00047-4

Keywords

Navigation