Skip to main content
Log in

Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnesium (Mg) production via electrolysis can offer an efficient and sustainable alternative to conventional metallothermic processes. However, electrolytic systems contain impurities like manganese (Mn) that significantly influence efficiency and product quality. This study investigates the local structure of Mn2+ and the intricate electrochemical behavior of Mn(II) within MgCl2-NaCl-KCl melts, aiming to explore its impacts on electrode kinetics. Deep Potential Molecular Dynamics (DPMD) method is applied for structure introduction, and a strange chloride layer around Mn2+ is observed. Furthermore, cyclic voltammetry, chronopotentiometry, and other techniques are employed for study using tungsten electrodes with introduced MnCl2. Results reveal the quasi-reversible reduction of Mn(II) on tungsten. The diffusion coefficients (D) of Mn(II) at different temperatures are summarized, and an activation energy of 30.60 kJ·mol-1 for diffusion is found. Mn electrodeposition follows instantaneous nucleation. While limited in scope, these findings provide important insights into Mn(II) interactions that could inform efforts to optimize Mg electrolysis. Further research on Mn(II) effects on melt structure is still needed to understand electrolytic systems comprehensively. This work significantly furthers the fundamental comprehension of Mn(II) electrochemistry within industrial Mg production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  • Abbott T B (2015) Magnesium: industrial and research developments over the last 15 years,Corrosion.71 120.

    Article  CAS  Google Scholar 

  • Bu M., Feng T., Lu G.,Prediction on Local Structure and Properties of LiCl-KCl-AlCl3 Ternary Molten Salt with Deep Learning Potential,Journal of Molecular Liquids.(2022) 120689.

  • Feng T., Zhao J., Liang W., Lu G.,Molecular dynamics simulations of lanthanum chloride by deep learning potential,Computational Materials Science.210 (2022) 111014.

    Article  Google Scholar 

  • Gao F., Nie Z.-r., Wang Z.-h., Gong X.-z., Zuo T.-y.,Assessing environmental impact of magnesium production using Pidgeon process in China,Transactions of Nonferrous Metals Society of China.18 (2008) 749.

    Article  CAS  Google Scholar 

  • Ha HY, Kim HJ, Baek SM, Kim B, Sohn SD, Shin HJ, Jeong HY, Park SH, Yim CD, You BS, Lee JG, Park SS (2015) Improved corrosion resistance of extruded Mg-8Sn-1Zn-1Al alloy by microalloying with Mn. Scripta Mater 109:38

    Article  CAS  Google Scholar 

  • Halmann M, Frei A, Steinfeld A (2008) Magnesium production by the pidgeon process involving dolomite calcination and MgO Silicothermic reduction: Thermodynamic and environmental analyses. Ind Eng Chem Res 47:2146

    Article  CAS  Google Scholar 

  • Hillis JE, Reichek KN (1986) High purity magnesium AM60 Alloy: The critical contaminant limits and the salt water corrosion performance, SAE transactions. 227

  • Kim JI, Nguyen HN, You BS, Kim YM (2019) Effect of Y addition on removal of Fe impurity from magnesium alloys. Scripta Mater 162:355

    Article  CAS  Google Scholar 

  • Lee T-H, Okabe TH, Lee J-Y, Kim YM, Kang J (2021) Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode. J Magnes Alloys 9:1644

    Article  CAS  Google Scholar 

  • Liang W, Lu G, Yu J (2021) Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2–KCl Eutectic. ACS Appl Mater Interfaces 13:4034

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Lu G, Yu J (2022) Machine learning accelerates molten salt simulations: Thermal conductivity of MgCl2-NaCl Eutectic. Adv Theory Simul 5:2200206

    Article  CAS  Google Scholar 

  • Liu M, Song G-L (2013) Impurity control and corrosion resistance of magnesium–aluminum alloy. Corros Sci 77:143

    Article  CAS  Google Scholar 

  • Liu Z, Lu G, Yu J (2021) Investigation on electrochemical behaviors of MnCl2 impurity in LiCl-KCl melts. Ionics 27:2979

    Article  CAS  Google Scholar 

  • Matsuda H, Ayabe Y (1955) Zur Theorie der Randles-Sevčikschen Kathodenstrahl-Polarographie, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische. Chemie 59:494

    CAS  Google Scholar 

  • Nwaogu UC, Blawert C, Scharnagl N, Dietzel W, Kainer KU (2010) Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corros Sci 52:2143

    Article  CAS  Google Scholar 

  • Ramakrishnan S, Koltun P (2016) A comparison of the greenhouse impacts of magnesium produced by electrolytic and Pidgeon processes. Essent Read Magn Technol 169–174

  • Reichek KN, Clark KJ, Hillis JE (1985) Controlling the salt water corrosion performance of magnesium AZ91 alloy. SAE Trans 318–329

  • Sahoo DK, Satpati AK, Krishnamurthy N (2015) Electrochemical properties of Ce (iii) in an equimolar mixture of LiCl–KCl and NaCl–KCl molten salts. RSC Adv 5:33163

    Article  CAS  Google Scholar 

  • Sridharan K, Allen TR (2013) Molten salts chemistry, Elsevier, 241–267

  • Wang H, Zhang L, Han J, Weinan E (2018) DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 228:178

    Article  CAS  Google Scholar 

  • Xiong N, Friedrich S, Mohamed SR, Kirillov I, Ye X, Tian Y, Friedrich B (2022) The Separation behavior of impurities in the purification of high-purity magnesium via vacuum distillation. J Sustain Metall 8:1561

    Article  Google Scholar 

  • Xu T, Yang Y, Peng X, Song J, Pan F (2019) Overview of advancement and development trend on magnesium alloy. J Magnes Alloys 7:536

    Article  CAS  Google Scholar 

  • Xu J, Zhang T, Li X (2023) Research on the process, energy consumption and carbon emissions of different magnesium refining processes. Materials 16(9):3340

  • Yang Y, Xiong X, Chen J, Peng X, Chen D, Pan F (2021) Research advances in magnesium and magnesium alloys worldwide in 2020. J Magnes Alloys 9:705

    Article  CAS  Google Scholar 

  • Zhang L, Han J, Wang H, Car R, Weinan E (2018) Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett 120:143001

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Feng T, Lu G, Yu J (2023) Insights into the local structure evolution and thermophysical properties of NaCl–KCl–MgCl2–LaCl3 melt driven by machine learning. J Mater Chem A 11:23999

    Article  CAS  Google Scholar 

  • Zhu S, Liu Z, Qu R, Wang L, Li Q, Guan S (2013) Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. J Magnes Alloys 1:249

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2022YFB3709300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guimin Lu.

Ethics declarations

Competing interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Liu, Z. & Lu, G. Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis. Braz. J. Chem. Eng. (2024). https://doi.org/10.1007/s43153-024-00465-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-024-00465-9

Keywords

Navigation