Skip to main content
Log in

Preparation of layered high nickel cobalt-free LiNi0.8Mn0.17Fe0.03O2 cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the rapid development of the global economy, energy crisis and environmental protection problems are in urgent need of solution. And the development of energy-saving and new energy vehicles is an inevitable trend to improve the energy structure, alleviate the conflict between oil supply and demand, and improve the living environment of human beings. Layered high nickel material is considered as one of the most promising cathode materials for power batteries because of its high energy density, high platform potential and good rate capability. However, it has problems such as high dependence on cobalt resources and poor cycling stability. In this paper, the preparation of layered high nickel cobalt-free cathode materials is investigated. Because Fe element has the advantages of large reserves and low price. At the same time, Fe makes the layered structure of the positive electrode more stable. In this paper, LiNi0.8Mn0.17Fe0.03O2 (Li/TM = 1.01, 1.03, 1.05) materials with different Li/TM ratios were prepared by solid-phase method to investigate the effects of different Li/TM ratios on the structural and electrochemical properties of LiNi0.8Mn0.17Fe0.03O2 materials. The results show that the materials synthesized with different Li/TM ratios have a layered structure. When the Li/TM ratio is 1.03, the crystal structure is the best and the degree of Li/Ni mixing is the least. The electrochemical performance study shows that the synthesized materials have the optimal electrochemical performance at the Li/TM ratio of 1.03. The electrochemical behavior during lithium embedding/delithiation was also investigated by quasi-in situ XRD, dQ/dV and CV tests. This study will provide some reference and guidance for the development and application of next-generation low-cost cobalt-free lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Amin R, Muralidharan N, Petla RK, Ben Yahia H, Al-Hail SAJ, Essehli R, Daniel C, Khaleel MA, Belharouak I (2020) Research advances on cobalt-free cathodes for Li-ion batteries—the high voltage LiMn1.5Ni0.5O4 as an example. J Power Sources 467:228318

    Article  CAS  Google Scholar 

  • Billaud J, Sheptyakov D, Sallard S, Leanza D, Talianker M, Grinblat J, Sclar H, Aurbach D, Novak P, Villevieille C (2019) Li/Fe substitution in Li-rich Ni Co, Mn oxides for enhanced electrochemical performance as cathode materials. J Mater Chem A 7(25):15215

    Article  CAS  Google Scholar 

  • Chen ZJ, Wang T, Yu HJ, Guo J, Zhong HB, Hu CY, Zhao RR, Chen HY (2021) Closed-loop utilization of molten salts in layered material preparation for lithium-ion batteries. Front Energy Res 8:587449

    Article  Google Scholar 

  • Croy JR, Long BR, Balasubramanian M (2019) A path toward cobalt-free lithium-ion cathodes. J Power Sources 440:227113

    Article  CAS  Google Scholar 

  • Cui Z, Xie Q, Manthiram A (2021) A cobalt- and manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries. Adv Energy Mater 11(41):2102421

    Article  CAS  Google Scholar 

  • Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138(8):2207

    Article  CAS  Google Scholar 

  • Di Lecce D, Verrelli R, Hassoun J (2017) Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chem 19(15):3442

    Article  Google Scholar 

  • Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16(4):168

    Article  CAS  Google Scholar 

  • Hwang DY, Kim HS, Lee SH (2022) Highly stable and high-performance MgHPO4 surface-modified Ni-rich cathode materials for advanced lithium ion batteries. J Mater Chem A 10:16555–16569

    Article  CAS  Google Scholar 

  • Kim UH, Kim JH, Hwang JY, Ryu HH, Yoon CS, Sun YK (2019) Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today 23:26

    Article  CAS  Google Scholar 

  • Kim Y, Seong WM, Manthiram A (2021a) Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: progress, challenges, and perspectives. Energy Storage Mater 34:250

    Article  Google Scholar 

  • Kim AY, Strauss F, Bartsch T, Teo JH, Janek J, Brezesinski T (2021b) Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Sci Rep 11(1):5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Li W, Dolocan A, Celio H, Park H, Warner JH, Manthiram A (2021) In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv Energy Mater 11(31):2100858

    Article  CAS  Google Scholar 

  • Li KY, Chen H, Shua FF, Chen KF, Xue DF (2014) Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries. Electrochim Acta 136:10

    Article  CAS  Google Scholar 

  • Li H, Cormier M, Zhang N, Inglis J, Li J, Dahn JR (2019) Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 166(4):A429

    Article  CAS  Google Scholar 

  • Li N, Sallis S, Papp JK, McCloskey BD, Yang WL, Tong W (2020) Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes. Nano Energy 78:105365

    Article  CAS  Google Scholar 

  • Liu LL, Gu SJ, Wang SL, Zhang XY, Chen SM (2020) A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC Adv 10(3):1704

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang YD, Zhang Q, Cheng FY, Chen J (2020) Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology 53:1

    Article  CAS  Google Scholar 

  • Ma R, Zhao Z, Fu J, Lv H, Li C, Wu B, Mu D, Wu F (2020) Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries. ChemElectroChem 7(12):2637

    Article  CAS  Google Scholar 

  • Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK (2016) Nickel-Rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6(1):1501010

    Article  Google Scholar 

  • Mesnier A, Manthiram A (2020) Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces 12(47):52826

    Article  CAS  PubMed  Google Scholar 

  • Mu LQ, Zhang R, Kan WH, Zhang Y, Li LX, Kuai CG, Zydlewski B, Rahman MM, Sun CJ, Sainio S, Avdeev M, Nordlund D, Xin HLL, Lin F (2019) Dopant distribution in co-free high-energy layered cathode materials. Chem Mater 31(23):9769

    Article  CAS  Google Scholar 

  • Mu L, Kan WH, Kuai C, Yang Z, Li L, Sun CJ, Sainio S, Avdeev M, Nordlund D, Lin F (2020) Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl Mater Interfaces 12(11):12874

    Article  CAS  PubMed  Google Scholar 

  • Muralidharan N, Essehli R, Hermann RP, Amin R, Jafta C, Zhang J, Liu J, Du Z, Meyer III HM, Self E, Nanda J, Belharouak I (2020a) Lithium iron aluminum nickelate, LiNixFeyAlzO2-new sustainable cathodes for next-generation cobalt-free Li-Ion batteries. Adv Mater 32(34):e2002960

    Article  PubMed  Google Scholar 

  • Muralidharan N, Essehli R, Hermann RP, Parejiya A, Amin R, Bai YC, Du ZJ, Belharouak I (2020b) LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries. J Power Sources 471:228389

    Article  CAS  Google Scholar 

  • Nie Y, Xiao W, Miao C, Xu MB, Wang CJ (2020) Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta 334:135654

    Article  CAS  Google Scholar 

  • Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30(7):642

    Article  Google Scholar 

  • Park JH, Choi B, Kang YS, Park SY, Yun DJ, Park I, Ha Shim J, Park JH, Han HN, Park K (2018) Effect of residual lithium rearrangement on Ni-rich layered oxide cathodes for lithium-ion batteries. Energ Technol 6(7):1361

    Article  CAS  Google Scholar 

  • Park S, Jo C, Kim HJ, Kim S, Myung S-T, Kang H-K, Kim H, Song J, Yu J, Kwon K (2020) Understanding the role of trace amount of Fe incorporated in Ni-rich Li[Ni1-x-yCoxMny]O2 cathode material. J Alloys Compd 835:155342

    Article  CAS  Google Scholar 

  • Reissig F, Lange MA, Haneke L, Placke T, Zeier WG, Winter M, Schmuch R, Gomez-Martin A (2022) Synergistic effects of surface coating and bulk doping in Ni-rich lithium nickel cobalt manganese oxide cathode materials for high-energy lithium ion batteries. Chemsuschem 15(4):e202102220

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Arai H, Okada S, Yamaki J (1997) Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes. J Power Sources 68(2):711

    Article  CAS  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419

    Article  CAS  Google Scholar 

  • Song X, Liu GX, Yue HF, Luo L, Yang SY, Huang YY, Wang CR (2021) A novel low-cobalt long-life LiNi0.88Co0.06Mn0.03Al0.03O2 cathode material for lithium ion batteries. Chem Eng J 407:126301

    Article  CAS  Google Scholar 

  • Tian RZ, Wang ZX, Wang XQ, Zhang HZ, Ma Y, Song DW, Shi XX, Zhang LQ (2022) Preparation and electrochemical investigation of single-crystal LiNi0.6Co0.2Mn0.2O2 for high-performance lithium-ion batteries. N J Chem 46(10):4877

    Article  CAS  Google Scholar 

  • Wang X, Gao L, Zhou F, Zhang Z, Ji M, Tang C, Shen T, Zheng H (2004) Large-scale synthesis of α-LiFeO2 nanorods by low-temperature molten salt synthesis. J Cryst Growht 265:220–223

    Article  CAS  Google Scholar 

  • Wang X, Bai Y, Wang X, Wu C (2020) High-voltage layered ternary oxide cathode materials: failure mechanisms and modification methods. Chin J Chem 38(12):1847

    Article  CAS  Google Scholar 

  • Wang Y, Zha G, Zhang Y, Liang F, Dai Y, Yao Y, Kong L (2021) Study of the composite modified positive electrode between NCM811 and V2O5 materials in Li-Ion cells. NANO 16(03):2150032

    Article  CAS  Google Scholar 

  • Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich Oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6(21):1600906

    Article  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Wang M, Xu L, Kheimeh Sari HM, Li W, Hu J, Cao Y, Chen L, Wang L, Pu X, Wang J, Bai Y, Liu X, Li X (2021) A new co-free Ni-rich LiNi0.8Fe0.1Mn0.1O2 cathode for low-cost Li-ion batteries. ACS Appl Mater Interfaces 13(48):57341

    Article  CAS  PubMed  Google Scholar 

  • Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Du CY, Xu X, Han GK, Zuo PJ, Cheng XQ, Ma YL, Yin GP (2017) A Mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim Acta 248:534

    Article  CAS  Google Scholar 

  • Ye Z, Qiu L, Yang W, Wu Z, Liu Y, Wang G, Song Y, Zhong B, Guo X (2021) Nickel-Rich Layered Cathode Materials For Lithium-Ion Batteries. Chemistry 27(13):4249

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H (2012) High-energy “composite” layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys 14(18):6584

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Major Science and Technology Special Program of Yunnan Province (202202AG050003), the Applied Basic Research Plan of Yunnan Province (202101AS070020, 202201AT070184, 202101BE070001-016), the High-level Talent Introduction Scientific Research Start Project of KUST (20190015) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Meng or Peng Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing fiscal interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhu, B., Zhang, Y. et al. Preparation of layered high nickel cobalt-free LiNi0.8Mn0.17Fe0.03O2 cathode material for lithium-ion batteries. Braz. J. Chem. Eng. (2024). https://doi.org/10.1007/s43153-024-00446-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-024-00446-y

Keywords

Navigation