Skip to main content

Advertisement

Log in

Deep-hydrogenation of aviation turbine fuel over highly active and robust magneto-sensitive nanocatalyst

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Aviation turbine fuel (ATF) with low aromatic contents is essential for high-performance aircraft and long-range missiles due to its good thermal stability and combustion properties. Our study investigated the potential of a magneto-sensitive nanocatalyst (MSN) to reduce the aromatic contents of ATF through deep hydrogenation. Different compositions of MSN were synthesized through the wet impregnation and chemical reduction method by varying the concentrations of Fe, Ni, Co, and Mo over γ-Al2O3, MCM-41, and clay nanopowder as solid support. Among different combinations, Fe0.20:Ni0.60:Mo0.20 @ clay + γ-Al2O3 + MCM-41 as MSN showed excellent activity for deep hydrogenation of ATF. The structural and elemental features of the MSN were examined through FE-SEM, EDAX, XRD, and VSM techniques that confirm metal impregnation on the solid support. Using a batch reactor, the catalytic activity was investigated for deep hydrogenation of ATF using hydrogen gas under a reaction temperature range of 180–250 °C. The resulting fuel shows an increased calorific value (10,210 cal/g) with reduced density (0.782 g/mL) due to reducing aromatic contents from 22 to 9 vol%. Further, the synthesized MSN catalysts could be recovered through magnets, making them reusable for five cycles without losing the catalytic efficiency. The promising potential of MSN for deep hydrogenation of ATF (to obtain < 10 vol% aromatics) will help to achieve the fuel thermal-oxidative stability needed for long-range missile application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amara AB, Kaoubi S, Starck L (2016) Toward an optimal formulation of alternative jet fuels: enhanced oxidation and thermal stability by the addition of cyclic molecules. Fuel 173:98–105

    Article  CAS  Google Scholar 

  • Behnejad B, Abdouss M, Tavasoli A (2019a) Comparison of performance of Ni–Mo/γ-alumina catalyst in HDS and HDN reactions of main distillate fractions. Pet Sci 16(3):645–656

    Article  CAS  Google Scholar 

  • Behnejad B, Abdouss M, Tavasoli A (2019b) Ni–Mo supported nanoporous graphene as a novel catalyst for HDS and HDN of heavy naphtha. Braz J Chem Eng 36:265–273

    Article  CAS  Google Scholar 

  • Blakey S, Wilson C, Farmery M, Midgley R (2011) Fuel effects on range versus payload for modern jet aircraft. Aeronaut J 115(1172):627–634

    Article  Google Scholar 

  • Burdette G, Lander H, McCoy J (1978) High-energy fuels for cruise missiles. J Energy 2(5):289–292

    Article  CAS  Google Scholar 

  • Castaño P, Gutiérrez A, Hita I, Arandes JM, Aguayo AST, Bilbao J (2012) Deactivating species deposited on Pt–Pd catalysts in the hydrocracking of light-cycle oil. Energy Fuels 26(3):1509–1519

    Article  CAS  Google Scholar 

  • Chevalier J, Petrino P, Gaston-Bonhomme Y (1990) Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. J Chem Eng Data 35(2):206–212

    Article  CAS  Google Scholar 

  • Choi K-H, Shokouhimehr M, Sung Y-E (2013) Heterogeneous Suzuki cross-coupling reaction catalyzed by magnetically recyclable nanocatalyst. Bull Korean Chem Soc 34(5):1477–1480

    Article  CAS  Google Scholar 

  • Chung H, Chen C, Kremer R, Boulton J, Burdette G (1999) Recent developments in high-energy density liquid hydrocarbon fuels. Energy Fuels 13(3):641–649

    Article  CAS  Google Scholar 

  • Chupin J, Gnep NS, Lacombe S, Guisnet M (2001) Influence of the metal and of the support on the activity and stability of bifunctional catalysts for toluene hydrogenation. Appl Catal A 206(1):43–56

    Article  CAS  Google Scholar 

  • Daligaux V, Richard R, Manero M (2021) Deactivation and Regeneration of Zeolite Catalysts Used in Pyrolysis of Plastic Wastes—A Process and Analytical Review. Catalysts. 11:770

  • De S, Zhang J, Luque R, Yan N (2016) Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ Sci 9(11):3314–3347

    Article  CAS  Google Scholar 

  • Demirelli M, Karaoğlu E, Baykal A, Sözeri H, Uysal E (2014) Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. J Alloy Compd 582:201–207

    Article  CAS  Google Scholar 

  • Dong Z, Le X, Li X, Zhang W, Dong C, Ma J (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B 158:129–135

    Article  CAS  Google Scholar 

  • Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A (2020) Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catal Rev 14:1–70

  • Gentzis T, Rahimi P (2003) A microscopic approach to determine the origin and mechanism of coke formation in fractionation towers☆. Fuel 82(12):1531–1540

    Article  CAS  Google Scholar 

  • Goyne KW, Zimmerman AR, Newalkar BL, Komarneni S, Brantley SL, Chorover J (2002) Surface charge of variable porosity Al2O3(s) and SiO2(s) adsorbents. J Porous Mater 9(4):243–256

    Article  CAS  Google Scholar 

  • Guisnet M, Magnoux P (2001) Organic chemistry of coke formation. Appl Catal A 212(1):83–96

    Article  CAS  Google Scholar 

  • Gyergyek S, Kocjan A, Bjelić A, Grilc M, Likozar B, Makovec D (2018) Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals. Mater Res Lett 6(8):426–431

    Article  CAS  Google Scholar 

  • Hu Y, Zhao C, Yin L, Wen T, Yang Y, Ai Y, Wang X (2018) Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chem Eng J 349:347–357

    Article  CAS  Google Scholar 

  • Hussein HQ, Ali SM, Altabbakh BAA, Hussein SJ, Ali YM, karim Ibrahim S (2018) Hydrodesulfurization and hydrodearomatization of kerosene over high metal loading Ni w/γ-Al2O3 catalyst. J Pet Res Stud 8(4):28–46

    Google Scholar 

  • Jing J-Y, Wang J-Z, Liu D-C, Qie Z-Q, Bai H-C, Li W-Y (2020a) Naphthalene hydrogenation saturation over Ni2P/Al2O3 catalysts synthesized by thermal decomposition of hypophosphite. ACS Omega 5(48):31423–31431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing J-Y, Yang Z-F, Wang J-Z, Liu D-C, Jie F, Li W-Y (2020b) Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst. J Fuel Chem Technol 48(7):842–851

    Article  CAS  Google Scholar 

  • Khan N, Abhyankar A, Nandi T, Eswara Prasad N (2019a) Nickel nanocatalyst supported single-step hydroconversion of dicyclopentadiene (DCPD) into high energy-density fuel, exo-tetrahydrodicyclopentadiene (Exo-THDCPD). J Nanosci Nanotechnol 19(12):7982–7992

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Katiyar A, Nandi T, Abhyankar A, Prasad NE (2019b) Tunable thermal conductivity and rheology of in-house synthesized Fe55Co25Ni20 complex fluids under the external magnetic field. J Mol Liq 294:111662

    Article  CAS  Google Scholar 

  • Khan N, Abhyankar AC, Nandi T (2021) Cyclodimerization of norbornadiene (NBD) into high energy-density fuel pentacyclotetradecane (PCTD) over mesoporous silica supported Co–Ni nanocatalyst. J Chem Sci 133(1):1–10

    Article  CAS  Google Scholar 

  • Kurtan U, Baykal A (2015) Fe3O4@ Tween20@ Ag magnetically recyclable nanocatalyst for various hydrogenation reactions. J Inorg Organomet Polym Mater 25(4):657–663

    Article  CAS  Google Scholar 

  • Lensveld DJ, Mesu JG, van Dillen AJ, de Jong KP (2000) The application of well-dispersed nickel nanoparticles inside the mesopores of MCM-41 by use of a nickel citrate chelate as precursor, studies in surface science and catalysis, vol 143. Elsevier, New York, pp 647–657

    Google Scholar 

  • Li W, Wang Z, Zhang M, Tao K (2005) Novel Ni2Mo3N/zeolite catalysts used for aromatics hydrogenation as well as polycyclic hydrocarbon ring opening. Catal Commun 6(10):656–660

    Article  CAS  Google Scholar 

  • Li P, Wang L, Zhang X, Li G (2021) Deep hydrogenation saturation of naphthalene facilitated by enhanced adsorption of the reactants on micro-mesoporous Pd/HY. Chem Sel 6(22):5524–5533

    CAS  Google Scholar 

  • Marroquín-Sánchez G, Ancheyta-Juárez J, Ramírez-Zúñiga A, Farfán-Torres E (2001) Effect of crude oil properties on the hydrodesulfurization of middle distillates over NiMo and CoMo catalysts. Energy Fuels 15(5):1213–1219

    Article  CAS  Google Scholar 

  • Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Christopher P (2017) Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem 9(2):120–127

    Article  CAS  PubMed  Google Scholar 

  • Meffre A, Mehdaoui B, Connord V, Carrey J, Fazzini PF, Lachaize S, Chaudret B (2015) Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis. Nano Lett 15(5):3241–3248

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Nieto JA, de Oca AV-M, Calzada LA, Klimova TE (2021) Trimetallic NiMoW and CoMoW catalysts supported on SBA-15 modified with titania or zirconia for deep hydrodesulfurization. Catal Today 360:78–89

    Article  CAS  Google Scholar 

  • Meng J, Yang J, Fang J, Li N, He Y, Huang H, Lu J (2019) Production of liquid fuels from low-temperature coal tar via hydrogenation over CoMo/USY catalysts. React Kinet Mech Catal 127(2):961–978

    Article  CAS  Google Scholar 

  • Monteiro-Gezork ACA, Effendi A, Winterbottom JM (2007a) Hydrogenation of naphthalene on NiMo-and Ni/Al2O3 catalysts: pre-treatment and deactivation. Catal Today 128(1–2):63–73

    Article  CAS  Google Scholar 

  • Monteiro-Gezork ACA, Effendi A, Winterbottom JM (2007b) Hydrogenation of naphthalene on NiMo-and Ni/Al2O3 catalysts: pre-treatment and deactivation. Catal Today 128(1):63–73

    Article  CAS  Google Scholar 

  • Moses CA, Roets PN (2009) Properties, characteristics, and combustion performance of sasol fully synthetic jet fuel. J Eng Gas Turbines Power 131(4):431–443

  • Ochoa A, Bilbao J, Gayubo AG, Castaño P (2020) Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew Sustain Energy Rev 119:109600

    Article  CAS  Google Scholar 

  • Ouedraogo AS, Bhoi PR (2020) Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil. J Clean Prod 253:119957

    Article  CAS  Google Scholar 

  • Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352

    Article  CAS  Google Scholar 

  • Pawelec B, Mariscal R, Navarro R, Van Bokhorst S, Rojas S, Fierro J (2002) Hydrogenation of aromatics over supported Pt–Pd catalysts. Appl Catal A 225(1–2):223–237

    Article  CAS  Google Scholar 

  • Perez-Sena WY, Wärnå J, Eränen K, Tolvanen P, Estel L, Leveneur S, Salmi T (2021) Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: heterogeneously catalyzed epoxidation of fatty acid esters. Chem Eng Sci 230:116206

    Article  CAS  PubMed  Google Scholar 

  • Petrukhina N, Zakharyan E, Korchagina S, Nagieva M, Maksimov A (2017) Hydrogenation of polymeric petroleum resins in the presence of unsupported sulfide nanocatalysts. Pet Chem 57(14):1295–1303

    Article  CAS  Google Scholar 

  • Reddy KM, Song C (1996) Mesoporous zeolite-supported noble metal catalysts for low-temperature hydrogenation of aromatics in distillate fuels. Preprints of Papers, American Chemical Society, Division of Fuel Chemistry, 41(CONF-960807-)

  • Roan MA, Boehman AL (2004) The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks. Energy Fuels 18(3):835–843

    Article  CAS  Google Scholar 

  • Roldugina E, Glotov A, Isakov A, Maksimov A, Vinokurov V, Karakhanov E (2019) Ruthenium catalysts on ZSM-5/MCM-41 micro-mesoporous support for hydrodeoxygenation of guaiacol in the presence of water. Russ J Appl Chem 92(8):1170–1178

    Article  CAS  Google Scholar 

  • Rubio-Clemente A, Torres-Palma RA, Peñuela GA (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225

    Article  CAS  PubMed  Google Scholar 

  • Rumelfanger R, Asher SA, Perry MB (1988) UV resonance Raman characterization of polycyclic aromatic hydrocarbons in coal liquid distillates. Appl Spectrosc 42(2):267–272

    Article  CAS  Google Scholar 

  • Shafiq I, Shafique S, Akhter P, Yang W, Hussain M (2020) Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Catal Rev 1:1–86

  • Sharma G, Kumar D, Kumar A, Ala’a H, Pathania D, Naushad M, Mola GT (2017) Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater Sci Eng C 71:1216–1230

    Article  CAS  Google Scholar 

  • Shylesh S, Schuenemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49(20):3428–3459

    Article  CAS  Google Scholar 

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86(1–4):211–263

    Article  CAS  Google Scholar 

  • Stamatiou I, Brennan C, Muller FL (2019) Determination of styrene hydrogenation surface kinetics through detailed simulation of the hydrogen uptake curve. React Chem Eng 4(8):1477–1485

    Article  CAS  Google Scholar 

  • Venezia A, La Parola V, Pawelec B, Fierro J (2004) Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; support acidity effect. Appl Catal A 264(1):43–51

    Article  CAS  Google Scholar 

  • Vestal CR, Song Q, Zhang ZJ (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108(47):18222–18227

    Article  CAS  Google Scholar 

  • Wang G, Eser S (2007) Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development. Energy Fuels 21(6):3563–3572

    Article  CAS  Google Scholar 

  • Wang M, Qian X, Xie L, Fang H, Ye L, Duan X, Yuan Y (2018) Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons. ACS Sustain Chem Eng 7(2):1989–1997

    Article  CAS  Google Scholar 

  • Wang D, Li J, Zheng A, Ma H, Pan Z, Qu W, Tian Z (2019) Quasi-single-layer MoS2 on MoS2/TiO2 nanoparticles for anthracene hydrogenation. ACS Appl Nano Mater 2(8):5096–5107

    Article  CAS  Google Scholar 

  • Wang X, Jia T, Pan L, Liu Q, Fang Y, Zou J-J, Zhang X (2020) Review on the relationship between liquid aerospace fuel composition and their physicochemical properties. Trans Tianjin Univ 21:1–23

  • Wu Y-G, Wen M, Wu Q-S, Fang H (2014) Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J Phys Chem C 118(12):6307–6313

    Article  CAS  Google Scholar 

  • Xian X, Ran C, Yang P, Chu Y, Zhao S, Dong L (2018) Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: experiments and mechanism. Catal Sci Technol 8(16):4241–4256

    Article  CAS  Google Scholar 

  • Ye G, Wang H, Duan X, Sui Z, Zhou X, Coppens MO, Yuan W (2019) Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation. AIChE J 65(1):140–150

    Article  CAS  Google Scholar 

  • Yuan T, Marshall WD (2005) Catalytic hydrogenation of polycyclic aromatic hydrocarbons over palladium/γ-Al2O3 under mild conditions. J Hazard Mater 126(1–3):149–157

    Article  CAS  PubMed  Google Scholar 

  • Yun G, Guan Q, Li W (2017) The synthesis and mechanistic studies of a highly active nickel phosphide catalyst for naphthalene hydrodearomatization. RSC Adv 7(14):8677–8687

    Article  CAS  Google Scholar 

  • Zanato A, Silva V, Lima D, Jacinto M (2017) Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media. Appl Nanosci 7(8):781–791

    Article  CAS  Google Scholar 

  • Zhang X, Pan L, Wang L, Zou J-J (2018) Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids. Chem Eng Sci 180:95–125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the characterization facility of DMSRDE (DRDO) Kanpur and IIT-Kanpur. The authors also acknowledge the staff members, especially Mithilesh Kumar Baitha, for the properties evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interest or personal relation that influenced the reported work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Kandasubramanian, B., Abhyankar, A.C. et al. Deep-hydrogenation of aviation turbine fuel over highly active and robust magneto-sensitive nanocatalyst. Braz. J. Chem. Eng. 39, 473–485 (2022). https://doi.org/10.1007/s43153-021-00211-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00211-5

Keywords

Navigation