Skip to main content
Log in

Glutaraldehyde-crosslinked cells from Aspergillus oryzae IPT-301 for high transfructosylation activity: optimization of the immobilization variables, characterization and operational stability

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cells of Aspergillus oryzae IPT-301 rich in fructosyltransferase (FTase) were successfully immobilized by crosslinking with glutaraldehyde and used for the transfructosylation reaction of sucrose. The glutaraldehyde concentration and pH used in the immobilization process were optimized for maximizing the transfructosylation activity (AT) and minimizing the hydrolytic activity (AH). Also, the operational stability and the influence of temperature, pH and sucrose concentration on the enzymatic activities of the free and crosslinked cells were evaluated. Both the maximum AT and minimum AH were obtained for cells immobilized with glutaraldehyde concentration of 2.1% (v/v) and pH 7.9. Crosslinked cells showed considerably higher AT/AH ratio than free cells at several temperatures, pH and sucrose concentrations in the reaction media. Kinetics data suggested that crosslinked cells present higher substrate-enzyme affinity and transfructosylation rate than free cells. Furthermore, after 12 batch reaction cycles the FTase present in the immobilized cell kept 88.9% of its initial AT, demonstrating a considerably higher operational stability than the FTase present in the free cell, which showed 50.3% of its initial AT. These results suggest the potential use of crosslinked cells of Aspergillus oryzae IPT-301 for the large-scale production of fructooligosaccharides (FOS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar-Oliveira E, Maugeri F (2010) Characterization of the immobilized Fructosyltranferase from Rhodotorula sp. Int J Food Eng. https://doi.org/10.2202/1556-3758.1894

    Article  Google Scholar 

  • Almeida ACS, Araújo LC, Costa AM, Abreu CAM, Lima MAGA, Palha MAPF (2005) Sucrose hydrolysis catalyzed by auto-immobilized invertase into intact cells of Cladosporium cladosporioides. Electron J Biotechnol 8(1):54–62

    Google Scholar 

  • Antosová M, Polakovic M (2001) Fructosyltransferase: The enzymes catalyzing production of fructooligosaccharides. Chem Pap Chem Zvesti 55:350–358

    Google Scholar 

  • Antosová M, Illeová V, Vandáková M, Druzkovská A, Polakovic M (2008) Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. J Biotechnol 135:58–63

    Article  Google Scholar 

  • Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R (2012) Versatility of glutaraldehyde to immobilize lipases: Effect of the immobilization protocol on the properties of lipase B from Candida Antarctica. Process Biochem. https://doi.org/10.1016/j.procbio.2012.04.019

    Article  Google Scholar 

  • Canilha L, Carvalho W, Silva JBA (2006) Biocatalisadores imobilizados: uso de células e enzimas imobilizadas em processos biotecnológicos. Biotecnol Cienc Desenvolv 36:48–57

    Google Scholar 

  • Castro CC, Nobre C, Duprez ME, Weireld G, Hantson AL (2017) Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo-oligosaccharides production. Biochem Eng J 118:82–90

    Article  CAS  Google Scholar 

  • Chen WC, Liu CH (1996) Production of β-fructofuranosidase by Aspergillus japonicus. Enzyme Microb Technol. https://doi.org/10.1016/0141-0229(95)00099-2

    Article  Google Scholar 

  • Chien CS, Lee WC, Lin TJ (2001) Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme Microb Technol 29(4-5):252-257. https://doi.org/10.1016/S0141-0229(01)00384-2

  • Cuervo-Fernandez R, Maresma BG, Juárez A, Martínez J (2004) Production of fructoligosaccharides by β-fructofuranosidase from Aspergillus sp. 27H. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.967

    Article  Google Scholar 

  • Cuervo-Fernandez R, Ottoni CA, Silva ES, Matsubara RMS, Carter JM, Magossi LR, Wada MA, Andrade MF, Maresma BG, Maiorano AE (2007) Screening of β-fructofuranosidase-producing microorganisms and effect of pH and temperature on enzymatic rate. Appl Microbiol Biotechnol 74(1):87–93

    Article  Google Scholar 

  • Cunha JS, Ottoni CA, Morales SAV, Silva ES, Maiorano AE, Perna RF (2019) Synthesis and characterization of fructosyltransferase from Aspergillus oryzae IPT-301 for high fructooligosaccharides production. Braz J Chem Eng. 36(2):657–668. https://doi.org/10.1590/0104-6632.20190362s20180572

  • Fields PA (2001) Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol Part A Mol Integr Physiol. https://doi.org/10.1016/S1095-6433(00)00359-7

    Article  Google Scholar 

  • Ganaie MA, Gupta US (2014) Recycling of cell culture and efficient release of intracelular fructosyltransferase by ultrasonication for the production of fructooligosaccharides. Carbohydr Polym 110:253–258

    Article  CAS  Google Scholar 

  • Ganaie MA, Lateef A, Gupta US (2014) Enzymatic trends of fructooligosaccharides production by microorganisms. Appl Biochem Biotechnol 172:2143–2159

    Article  CAS  Google Scholar 

  • Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2005) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128(1):204–211

    Article  Google Scholar 

  • Hidaka H, Hirayama M, Sumi N (1988) A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem. https://doi.org/10.1080/00021369.1988.10868810

    Article  Google Scholar 

  • Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructooligosaccharideproducing β-fructofuranosidase from Aspergillus niger ATCC 20611. Agric Biol Chem. https://doi.org/10.1271/bbb1961.53.667

    Article  Google Scholar 

  • Huang MP, Wu M, Xu QS, Mo DJ, Feng JX (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.6b02115

    Article  PubMed  Google Scholar 

  • Kamimura ES, Silva GS, Covre LM, Carvalho RA, Santos AMP (2009) Immobilization of fructosyltransferase from Pichia pastoris in blend of alginate and gelatin. New Biotechnol. https://doi.org/10.1016/j.nbt.2009.06.485

    Article  Google Scholar 

  • Kim BW, Kwon HJ, Park HY, Nam SW, Park JP, Yun JW (2000) Production of a novel transfructosylating enzyme from Bacillus macerans EG-6. Bioprocess Eng. https://doi.org/10.1007/s004499900078

    Article  Google Scholar 

  • Krasnan V, Stloukal R, Rosenberg M (2016) Rebros M (2016) Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 100(6):2535–2553

    Article  CAS  Google Scholar 

  • L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81(1):73–84

    Article  Google Scholar 

  • Long K, Ghazali HM, Ariff A, Ampon K, Bucke C (1996) In situ crosslinking of Aspergillus flavus lipase: improvement of activity, stability and properties. Biotechnol Lett. https://doi.org/10.1007/BF00128587

    Article  Google Scholar 

  • López-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisán JM, Fernández-Lafuente R (2005) Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2004.09.015

    Article  PubMed  Google Scholar 

  • Lüscher M, Erdin C, Sprenger N, Hochstrasser U, Boller T, Wiemken A (1996) Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Lett. https://doi.org/10.1016/0014-5793(96)00343-2

    Article  PubMed  Google Scholar 

  • Maresma BG, Castillo BG, Fernández RC, Silva ES, Maiorano AE, Rodrigues MFA (2010) Mutagenesis of Aspergillus oryzae IPT-301 to improve the production of β-fructofuranosidase. Braz J Microbiol. https://doi.org/10.1590/S1517-83822010000100027

    Article  PubMed  PubMed Central  Google Scholar 

  • Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004a) Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. https://doi.org/10.2144/04375RV01

    Article  PubMed  Google Scholar 

  • Migneault I, Dartiguenave C, Vinh J, Bertrand MJ, Waldron KC (2004b) Comparison of two glutaraldehyde immobilization techniques for solid-phase tryptic peptide mapping of human hemoglobin by capillary zone electrophoresis and mass spectrometry. Electrophoresis. https://doi.org/10.1002/elps.200305861

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  • Monsan P (1978) Optimization of glutaraldehyde activation of a support for enzyme immobilization. J Mol Catal. https://doi.org/10.1016/0304-5102(78)80026-1

    Article  Google Scholar 

  • Muñiz-Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN (2016) Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in solid-state fermentation using aguamiel as culture medium. Bioresour Technol. https://doi.org/10.1016/j.biortech.2016.03.022

    Article  PubMed  Google Scholar 

  • Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009) Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr Res. https://doi.org/10.1016/j.carres.2009.01.025

    Article  PubMed  Google Scholar 

  • Ning Y, Wang J, Chen J, Yang N, Jin Z, Xu X (2010) Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.04.026

    Article  PubMed  Google Scholar 

  • Nobre C, Filho EGA, Fernandes FAN, Brito ES, Rodrigues S, Teixeira JA, Rodrigues LR (2018) Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. Food Sci Technol. https://doi.org/10.1016/j.lwt.2017.10.015

    Article  Google Scholar 

  • Ottoni CA, Cuervo-Fernandez R, Piccoli RM, Moreira R, Guilarte-Maresma B, Silva ES, Rodrigues MFA, Maiorano A (2012) Media optimization for β-Fructofuranosidase production by Aspergillus oryzae. Braz J Chem Eng 29(1):49–59. https://doi.org/10.1590/S0104-66322012000100006

  • Perna RF, Cunha JS, Gonçalves MCP, Basso RC, Silva ES, Maiorano AE (2018) Microbial fructosyltransferase: production by submerged fermentation and evaluation of pH and temperature effects on transfructosylation and hydrolytic enzymatic activities. Int J Eng Res Sci 4(3):43–50

    Google Scholar 

  • Platková Z, Polakovič M, Stefuca V, Vandáková M, Antošová M (2006) Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chem Pap 60(6):469–472

    Article  Google Scholar 

  • Rodrigues MI, Iemma AF (2009) Planejamento de experimentos & otimização de processos. Casa do Espírito Amigo Fraternidade Fé e Amor,Campinas

  • Schuurmann J, Quehl P, Festel G, Jose J (2014) Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 98(19):8031–8046. https://doi.org/10.1007/s00253-014-5897-y

    Article  PubMed  Google Scholar 

  • Sheu D-C, Chang J-Y, Chen Y-J, Lee C-W (2013) Production of high-purity neofructooligosaccharides by culture of Xanthophyllomyces dendrorhous. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.01.061

    Article  PubMed  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Sun T, Du W, Liu D, Dai L (2010) Improved catalytic performance of GA crosslinking treated Rhizopus oryzae IFO 4697 whole cell for biodiesel production. Process Biochem 45(7):1192–1195

    Article  CAS  Google Scholar 

  • Szczesna-Antczak M, Antczak T, Rzyska M, Modrzejewska Z, Patura J, Kalinowska H, Bielecki S (2004) Stabilization of an intracellular Mucor circinelloides lipase for application in non-aqueous media. J Mol Catal B Enzym 29(1–6):163–171

    Article  CAS  Google Scholar 

  • Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62(4):375–381

    Article  Google Scholar 

  • Vega R, Zúniga-Hansen ME (2011) Enzymatic synthesis of fructooligosaccharides with high 1-kestose concentrations using response surface methodology. Bioresour Technol 102:10180–10186

    Article  CAS  Google Scholar 

  • Vescovi V, Kopp W, Guisán JM, Giordano RLC, Mendes AA, Tardioli PW (2016) Improved catalytic properties of Candida antarctica lipase B multi- attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochem. https://doi.org/10.1016/j.procbio.2016.09.016

    Article  Google Scholar 

  • Wang T-H (2015) Synthesis of Neofructooligosaccharides. Org Chem Insights 51-6. https://doi.org/10.4137/OCI.S13222

    Article  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J. https://doi.org/10.1096/fasebj.11.11.9285481

    Article  PubMed  Google Scholar 

  • Yun JW (1996) Fructooligosaccharides—Occurrence preparation and application. Enzyme Microb Technol 19(2):107–117. https://doi.org/10.1016/0141-0229(95)00188-3

  • Zeng Kang XA, Dong-mei Z, Liu C Brennan S, Brennan M, Jin-song Z, Shu-jua Yu (2016) Preparation of fructooligosaccharides using Aspergillus niger 6640 whole-cell as catalyst for bio-transformation. LWT - Food Sci Technol 651072–1079. https://doi.org/10.1016/j.lwt.2015.09.031

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Council for Scientific and Technological Development—CNPq (Proc. 421540/2018-4), Foundation for Research of the State of Minas Gerais (FAPEMIG, Process APQ-02131-14) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Perna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, R.L., Dias, G.S., Morales, S.A.V. et al. Glutaraldehyde-crosslinked cells from Aspergillus oryzae IPT-301 for high transfructosylation activity: optimization of the immobilization variables, characterization and operational stability. Braz. J. Chem. Eng. 38, 273–285 (2021). https://doi.org/10.1007/s43153-021-00110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00110-9

Keywords

Navigation