Skip to main content
Log in

COD/DOC balanced models for the oxidation process of organic compounds

Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nowadays, several advanced oxidation and enzymatic processes are available for the removal of organic compounds. Mathematical models are crucial to optimize the operating conditions and to reduce the costs associated with the studied oxidation process. The present work deals with a procedure to develop COD/DOC balanced models to represent the oxidation process of organic compounds. The procedure is of general nature since no hypothesis is made regarding the identity of the organic compounds or the oxidant employed. Using the developed procedure, proposed oxidation pathways always fulfill elemental and electron balances. Several examples of oxidation pathways were studied to demonstrate the usefulness of the procedure. From the analysis of a particular pathway, several restrictions regarding the range of possible values of the model coefficients can be found. These restrictions can be used to enhance the robustness of the fitting procedure of the model by using different types of data, such as COD, DOC and/or the actual concentration of some relevant species. This work will help researchers in areas related to the removal of organic compounds using any oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  • Bach A, Shemer H, Semiat R (2010) Kinetics of phenol mineralization by Fenton-like oxidation. Desalination 264:188–192

    Article  CAS  Google Scholar 

  • Beltrán FJ (2003) Ozone reaction kinetics for water and wastewater systems. CRC Press

  • Cabrera C, Cornaglia A, Córdoba A, Magario I, Ferreira ML (2017) Kinetic modelling of the hematin catalysed decolourization of Orange II solutions. Chem Eng Sci 161:127–137

    Article  CAS  Google Scholar 

  • Chahbane N, Popescu DL, Mitchell DA, Chanda A, Lenoir D, Ryabov AD, Schramma KW, Collins TJ (2007) FeIII–TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chem 9:49–57

    Article  CAS  Google Scholar 

  • Doumic LI, Haure PA, Cassanello MC, Ayude MA (2013) Mineralization and efficiency in the homogeneous Fenton Orange G oxidation. Appl Catal B 142–143:214–221

    Article  Google Scholar 

  • Doumic LI, Salierno G, Cassanello MC, Haure PA, Ayude MA (2015) Efficient removal of Orange G using Prussian Blue nanoparticles supported over alumina. Catal Today 240:67–72

    Article  CAS  Google Scholar 

  • Emami F, Tehrani Bagha AR, Gharanjig K, Menger FM (2010) Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination 257:124–128

    Article  CAS  Google Scholar 

  • Feng Y, Song Q, Lu W, Liu G (2017) Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices. Chemosphere 189:643–651

    Article  CAS  Google Scholar 

  • Gan L, Li B, Guo M, Weng X, Wang T, Chen Z (2018) Mechanism for removing 2,4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles. Chemosphere 206:168–174

    Article  CAS  Google Scholar 

  • Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42:2450–2460

    Article  CAS  Google Scholar 

  • Hinojosa Guerra MM, Oller Alberola I, Malato Rodriguez S, Agüera López A, Acevedo Merino A, Egea-Corbacho Lopera A, Quiroga Alonso JM (2019) Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Res 156:232–240

    Article  CAS  Google Scholar 

  • Inchaurrondo NS, Massa P, Fenoglio R, Font J, Haure P (2012) Efficient catalytic wet peroxide oxidation of phenol at moderate temperature using a high-load supported copper catalyst. Chem Eng J 198–199:426–434

    Article  Google Scholar 

  • Inchaurrondo N, Contreras EM, Haure P (2014) Catalyst reutilization in phenol homogeneous cupro-Fenton oxidation. Chem Eng J 251:146–157

    Article  CAS  Google Scholar 

  • Inchaurrondo N, Font J, Ramos CP, Haure P (2016) Natural diatomites: efficient green catalyst for Fenton-like oxidation of Orange II. Appl Catal B Environ 181:481–494

    Article  CAS  Google Scholar 

  • Kang N, Lee DS, Yoon J (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47:915–924

    Article  CAS  Google Scholar 

  • Khan E, Wirojanagud W, Sermsai N (2009) Effects of iron in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. J Hazard Mater 161:1024–1034

    Article  CAS  Google Scholar 

  • Lim S, McArdell CS, von Gunten U (2019) Reactions of aliphatic amines with ozone: kinetics and mechanisms. Water Res 157:514–528

    Article  CAS  Google Scholar 

  • Morales Urrea DA, Haure PM, García Einschlag FS, Contreras EM (2018a) Horseradish peroxidase-mediated decolourization of Orange II: modelling hydrogen peroxide utilization efficiency at different pH values. Environ Sci Pollut Res 25:21272–21285

    Article  Google Scholar 

  • Morales Urrea DA, Haure PM, Contreras EM (2018b) Monitoring the enzymatic oxidation of xenobiotics by hydrogen peroxide through oxidation-reduction potential measurements. Ind Eng Chem Res 57:16518–16525

    Article  CAS  Google Scholar 

  • Orhon D, Artan N (1994) Modelling of activated‐sludge systems. Technomic Publishing Co. Inc.

  • Pontes RFF, Moraes JEF, Machulek A Jr, Pinto JM (2010) A mechanistic kinetic model for phenol degradation by the Fenton process. J Hazard Mater 176:402–413

    Article  CAS  Google Scholar 

  • Ramírez JH, Duarte FM, Martins FG, Costa CA, Madeira LM (2009) Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: from batch to continuous reactor operation. Chem Eng J 148:394–404

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Villota N, Mijangos F, Varona F, Andrés J (2007) Kinetic modelling of toxic compounds generated during phenol elimination in wastewaters. Int J Chem Reactor Eng 5:A63

    Article  Google Scholar 

  • Zapico RR, Marín P, Diez FV, Ordóñez S (2015) Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: development of a kinetic model. Chem Eng J 270:122–132

    Article  CAS  Google Scholar 

  • Zazo JA, Casas JA, Mohedano AF, Rodríguez JJ (2009) Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Res 43:4063–4069

    Article  CAS  Google Scholar 

  • Zhou G, Guo J, Zhou G, Wan X, Shi H (2016) Photodegradation of Orange II using waste paper sludge-derived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation. J Environ Sci 47:63–70

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support given by Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Martín Contreras.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: COD/DOC balanced models to represent the oxidation of organic compounds

Appendix: COD/DOC balanced models to represent the oxidation of organic compounds

Parallel pathways with partial oxidation

In this example, the oxidation of S0 by an oxidant (Ox) produces two intermediates S1 and S2. While S1 is further oxidized to CO2, the oxidation of S2 release a non-oxidizable product S3. Considering that the elemental composition of a given compound Si is \( CH_{\alpha i} O_{\beta i} N_{\gamma i} S_{\delta i} P_{\varepsilon i} M_{mi} \), the reaction scheme to represent this case is the following:

$$ S_{0} + \nu_{0} Ox\mathop \to \limits^{{R_{0} }} f_{1} S_{1} + f_{2} S_{2} + \left( {1 - f_{1} - f_{2} } \right)CO_{2} + \left( {\gamma_{0} - f_{1} \gamma_{1} - f_{2} \gamma_{2} } \right)NO_{3}^{ - } + \left( {\delta_{0} - f_{1} \delta_{1} - f_{2} \delta_{2} } \right)SO_{4}^{2 - } + \left( {\varepsilon_{0} - f_{1} \varepsilon_{1} - f_{2} \varepsilon_{2} } \right)PO_{4}^{3 - } + \left( {m_{0} - f_{1} m_{1} - f_{2} m_{2} } \right)M^{ + } $$
(48)
$$ S_{1} + \nu_{1} Ox\mathop \to \limits^{{R_{1} }} CO_{2} + \gamma_{1} NO_{3}^{ - } + \delta_{1} SO_{4}^{2 - } + \varepsilon_{1} PO_{4}^{3 - } + m_{1} M^{ + } $$
(49)
$$ S_{2} + \nu_{2} Ox\mathop \to \limits^{{R_{2} }} f_{3} S_{3} + \left( {1 - f_{3} } \right)CO_{2} + \left( {\gamma_{2} - f_{3} \gamma_{3} } \right)NO_{3}^{ - } + \left( {\delta_{2} - f_{3} \delta_{3} } \right)SO_{4}^{2 - } + \left( {\varepsilon_{2} - f_{3} \varepsilon_{3} } \right)PO_{4}^{3 - } + \left( {m_{2} - f_{3} m_{3} } \right)M^{ + } $$
(50)

See Table 6.

Table 6 Stoichiometric matrix corresponding to the analyzed pathway

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, E.M. COD/DOC balanced models for the oxidation process of organic compounds. Braz. J. Chem. Eng. 37, 61–71 (2020). https://doi.org/10.1007/s43153-020-00008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00008-y

Keywords

Navigation