Skip to main content

Advertisement

Log in

The Non-canonical Role of Metabolic Enzymes in Immune Cells and Its Impact on Diseases

  • Immunometabolism (NOS Câmara, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to elucidate the new functions of metabolic enzymes and how they impact and modulate the activation and differentiation of immune cells. Macrophages and T cells are components of the innate and adaptive immune systems and play an important role in several diseases. To perform their function, these cells undergo activation and differentiation. It is appreciated that immune cells concurrently reprogram their metabolism of glucose, amino acid, and fatty acid to generate energy and substances essential to perform their function.

Recent Findings

It was recently described that some metabolism-involved enzymes have unconventional functions upon immune cells. For instance, hexokinase can act as a sensor for bacterial antigens and, in some cases, activate inflammasome assembly. On the other hand, GAPDH and PKM2 regulate the expression of some cytokines, whereas LDH-A blocks the inflammatory response and stearoyl-CoA desaturase promotes the survival of the immune cells.

Summary

Here, we summarize the recent findings of the non-canonical role of metabolism-related enzymes, mainly in glycolysis, since the influence of these little-known functions in immune cells and immune-mediated diseases is still a focus of recent works. Understanding and appreciating these enzymes and their mechanisms of action may assist in the development of new therapeutic strategies for autoimmunity, cancer, and transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol. 2013;13:3093–20.

    Google Scholar 

  2. Zeng H, Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol. 2015;36:3–12.

    CAS  PubMed  Google Scholar 

  3. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2007;28:445–89.

    CAS  Google Scholar 

  4. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8 T cell differentiation. Nat Rev Immunol. 2018;18:340–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaech SM, Cui W. Transcriptional control of effector and memory CD8 T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pollizzi KN, Patel CH, Sun I-H, Oh MH, Waickman AT, Wen J, et al. mTORC1 and mTORC2 selectively regulate CD8 T cell differentiation. J Clin Investig. 2015;125:2090–108.

    PubMed  PubMed Central  Google Scholar 

  7. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dehne N, Jung M, Mertens C, et al. Macrophage heterogeneity during inflammation. In: Parnham M.J. (eds) Compendium of inflammatory diseases. Basel: Springer; 2016. p. 865–74.

  11. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Storek KM, Monack DM. Bacterial recognition pathways that lead to inflammasome activation. Immunol Rev. 2015;265:112–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah A (2017) Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol.

  14. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 1997;18:326–32.

    Google Scholar 

  16. Hume DA, Radik JL, Ferber E, Weidemann MJ. Aerobic glycolysis and lymphocyte transformation. Biochem J. 1978;174:703–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Warburg O. The metabolism of carcinoma cells. J Cancer Res Ther. 1925;9:148–63.

    CAS  Google Scholar 

  18. MacIver NJ. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol. 2005;84:949.

    Google Scholar 

  19. Kelly B, ONeill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84.

    PubMed  PubMed Central  Google Scholar 

  20. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys. 2014;68:475–8.

    CAS  PubMed  Google Scholar 

  21. Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife. 2017;6:e21330.

    PubMed  PubMed Central  Google Scholar 

  22. Brand K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J. 1985;228:353–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci United States Am. 2007;104:19345–50.

    CAS  Google Scholar 

  24. van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8 T cell memory development. Immunity. 2012;36:68–78.

    PubMed  Google Scholar 

  25. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 T cell subsets. J Immunol. 2011;186:3299–303.

    CAS  PubMed  Google Scholar 

  26. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. ONeill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–65.

    CAS  Google Scholar 

  28. •• Wolf AJ, Reyes CN, Liang W, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166:624–36 This article describes the mechanism which hexokinase as a PRR stimulates inflammasome activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moon J-S, Hisata S, Park M-A, DeNicola GM, Ryter SW, Nakahira K, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 2015;12:102–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. • Chang C-H, Curtis JD, Maggi LB, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51 This article describes a non-canonical function of the GAPDH in T cell effector function.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yogalingam G, Hwang S, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase C (PKC) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem. 2013;288:18947–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex drives transcript-selective translation inhibition in murine macrophages. Mol Cell Biol. 2012;32:5046–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Millet P, Vachharajani V, McPhail L, Yoza B, McCall CE. GAPDH binding to TNF-mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. J Immunol. 2016;196:2541–51.

    CAS  PubMed  Google Scholar 

  34. De Rosa V, Galgani M, Porcellini A, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol. 2015;16:1174–84.

    PubMed  PubMed Central  Google Scholar 

  35. Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1 activity and IL-1 induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015;21:65–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. 2016;7:13280.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. • Peng M, Yin N, Chhangawala S, et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016;354:481–4 This paper describes the LDH-A activity in regulating histone acetylation and directly interfering IFN-γ production.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meiser J, Kramer L, Sapcariu SC, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem. 2015;291:3932–46.

    PubMed  PubMed Central  Google Scholar 

  39. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4 T cell subsets and inflammation. J Clin Investig. 2015;125:194–207.

    PubMed  Google Scholar 

  40. • Min BK, Park S, Kang HJ, et al. Pyruvate dehydrogenase kinase is a metabolic checkpoint for polarization of macrophages to the M1 phenotype. Front Immunol. 2019;10:944 This review provides a perspective of TCA cycle enzymes and its effects in macrophages and T cell functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Na YR, Jung D, Song J, et al. Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. J Mol Cell Biol. 2020;12:543–55.

    PubMed  PubMed Central  Google Scholar 

  42. Menk AV, Scharping NE, Moreci RS, Zeng X, Guy C, Salvatore S, et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 2018;22:1509–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pherson SM, Horkoff M, Gravel C, et al. STAT3 regulation of citrate synthase is essential during the initiation of lymphocyte cell growth. Cell Rep. 2017;19:910–8.

    Google Scholar 

  44. Sanchez LG, Fernandez MAC, Nieva PL, et al. Exploiting the passenger ACO1-deficiency arising from 9p21 deletions to kill T-cell lymphoblastic neoplasia cells. Carcinogenesis. 2020;41:1113–22.

    Google Scholar 

  45. Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8 T cell accumulation in gliomas. J Clin Investig. 2017;127:1425–37.

    PubMed  PubMed Central  Google Scholar 

  46. Mylonas E, Janin M, Bawa O, Opolon P, David M, Quivoron C, et al. Isocitrate dehydrogenase (IDH)2 R140Q mutation induces myeloid and lymphoid neoplasms in mice. Leukemia. 2014;28:1343–6.

    CAS  PubMed  Google Scholar 

  47. Palmieri EM, Cotto MG, Baseler WA, et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun. 2020;11:698.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1 through HIF-1. Nature. 2013;496:238–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim WS, Kim JS, Shin MK, Shin SJ. A novel Th1-type T-cell immunity-biasing effect of malate dehydrogenase derived from Mycobacterium avium subspecies paratuberculosis via the activation of dendritic cells. Cytokine. 2018;104:14–22.

    CAS  PubMed  Google Scholar 

  50. Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-B signaling. J Biol Chem. 2014;289:24691–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hassan I, Wang S, Xu L, et al. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase. Parasite Immunol. 2014;36:674–83.

    CAS  PubMed  Google Scholar 

  52. Son YM, Cheon IS, Goplen NP, et al. Inhibition of stearoyl-CoA desaturases suppresses follicular help T- and germinal center B- cell responses. Eur J Immunol. 2017;7:1067–77.

    Google Scholar 

  53. • Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018;175:1780–1795.e19 This article highlights a critical role of GLS enzyme in addition to that involved in the T cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol. 2013;33:2425–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD. The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules. 2015;5:702–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 2011;6:e17674.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X-B, Gu J-D, Zhou Q-H. Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac Cancer. 2015;6:1724.

    Google Scholar 

  58. Kim J, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2002;30:142–50.

    CAS  Google Scholar 

  59. Sanzey M, Abdul Rahim SA, Oudin A, Dirkse A, Kaoma T, Vallar L, et al. Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS One. 2015;10:e0123544.

    PubMed  PubMed Central  Google Scholar 

  60. DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 2018;9:446.

    PubMed  PubMed Central  Google Scholar 

  61. Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25:4683–96.

    CAS  PubMed  Google Scholar 

  62. Rasola A, Ciscato F, Filadi R, Masgras I, Pizzi M, Marin O, et al. Displacement of hexokinase 2 from mitochondria induces mitochondrial Ca2 overload and calpain-dependent cell death in cancer cells. Biochim Biophys Acta. 2018;1859:e5.

    Google Scholar 

  63. Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun. 2015;6:6069.

    CAS  PubMed  Google Scholar 

  64. Roberts DJ, Tan-Sah VP, Smith JM, Miyamoto S. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J Biol Chem. 2013;288:23798–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Amendola CR, Mahaffey JP, Parker SJ, et al. KRAS4A directly regulates hexokinase 1. Nature. 2016;576:482–6.

    Google Scholar 

  66. Roh J-I, Kim Y, Oh J, Kim Y, Lee J, Lee J, et al. Hexokinase 2 is a molecular bridge linking telomerase and autophagy. PLoS One. 2018;13:e0193182.

    PubMed  PubMed Central  Google Scholar 

  67. Mehta MM, Weinberg SE, Steinert EM, Chhiba K, Martinez CA, Gao P, et al. Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer Metab. 2018;6:10.

    PubMed  PubMed Central  Google Scholar 

  68. ONeill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213:15–23.

    CAS  Google Scholar 

  69. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Everts B, Amiel E, van der Windt GJW, Freitas TC, Chott R, Yarasheski KE, et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood. 2012;120:1422–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cortese M, Sinclair C, Pulendran B. Translating glycolytic metabolism to innate immunity in dendritic cells. Cell Metab. 2014;19:737–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kavanagh Williamson M, Coombes N, Juszczak F, Athanasopoulos M, Khan M, Eykyn T, et al. Upregulation of glucose uptake and hexokinase activity of primary human CD4 T cells in response to infection with HIV-1. Viruses. 2018;10:114.

    PubMed Central  Google Scholar 

  73. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, et al. Inhibiting glycolytic metabolism enhances CD8 T cell memory and antitumor function. J Clin Investig. 2013;123:4479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015;22:248–57.

    CAS  PubMed  Google Scholar 

  76. Pastorino JG, Hoek JB. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem. 2003;10:1535–51.

    CAS  PubMed  Google Scholar 

  77. Tait SWG, Green DR. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol. 2013;5:a008706.

    PubMed  PubMed Central  Google Scholar 

  78. Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2007;15:521–9.

    PubMed  Google Scholar 

  79. Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell. 2014;53:521–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tan VP, Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 2015;11:963–4.

    PubMed  PubMed Central  Google Scholar 

  81. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chornoguz O, Hagan RS, Haile A, Arwood ML, Gamper CJ, Banerjee A, et al. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. J Immunol. 2017;198:3939–48.

    CAS  PubMed  Google Scholar 

  84. Jones RG, Pearce EJ. MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells. Immunity. 2017;46:730–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pollizzi KN, Powell JD. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 2015;36:13–20.

    CAS  PubMed  Google Scholar 

  86. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcin ED. GAPDH as a model non-canonical AU-rich RNA binding protein. Semin Cell Dev Biol. 2019;86:162–73.

    CAS  PubMed  Google Scholar 

  88. Glaser PE, Gross RW. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry. 1995;34:12193–203.

    CAS  PubMed  Google Scholar 

  89. Colell A, Green DR, Ricci J-E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–81.

    CAS  PubMed  Google Scholar 

  90. Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 2011;23:317–23.

    CAS  PubMed  Google Scholar 

  91. Qvit N, Joshi AU, Cunningham AD, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein-protein interaction inhibitor reveals a non-catalytic role for GAPDH oligomerization in cell death. J Biol Chem. 2016;291:13608–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mukhopadhyay R, Jia J, Arif A, Ray PS, Fox PL. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci. 2009;34:324–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Galvn-Pea S, Carroll RG, Newman C, et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun. 2019;10:338.

    Google Scholar 

  94. Nakano T, Goto S, Takaoka Y, Tseng HP, Fujimura T, Kawamoto S, et al. A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation. BioFactors. 2018;44:597–608.

    CAS  PubMed  Google Scholar 

  95. Didiasova M, Schaefer L, Wygrecka M. When place matters: shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol. 2019;7:61.

    PubMed  PubMed Central  Google Scholar 

  96. Sedoris KC, Thomas SD, Miller DM. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer. 2010;10:157.

    PubMed  PubMed Central  Google Scholar 

  97. Zhu X, Miao X, Wu Y, Li C, Guo Y, Liu Y, et al. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in non-Hodgkins lymphomas. Exp Cell Res. 2015;335:216–23.

    CAS  PubMed  Google Scholar 

  98. Song Y, Luo Q, Long H, Hu Z, Que T, Zhang X, et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer. 2014;13:65.

    PubMed  PubMed Central  Google Scholar 

  99. Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 2000;473:47–52.

    CAS  PubMed  Google Scholar 

  100. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol life Sci CMLS. 2001;58:902–20.

    CAS  PubMed  Google Scholar 

  101. Daz-Ramos A, Roig-Borrellas A, Garca-Melero A, Lpez-Alemany R. Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol. 2012;2012:156795.

    Google Scholar 

  102. Kumari S, Malla R. New insight on the role of plasminogen receptor in cancer progression. Cancer Growth Metastasis. 2015;8:35–42.

    PubMed  PubMed Central  Google Scholar 

  103. Ji H, Wang J, Guo J, Li Y, Lian S, Guo W, et al. Progress in the biological function of alpha-enolase. Anim Nutr. 2016;2:12–7.

    PubMed  PubMed Central  Google Scholar 

  104. Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, et al. Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood. 2009;113:5588–98.

    CAS  PubMed  Google Scholar 

  105. Bae S, Kim H, Lee N, Won C, Kim HR, Hwang YI, et al. Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol. 2012;189:365–72.

    CAS  PubMed  Google Scholar 

  106. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:5546–53.

    CAS  Google Scholar 

  107. Subramanian A, Miller DM. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem. 2000;275:5958–65.

    CAS  PubMed  Google Scholar 

  108. Sedoris KC, Thomas SD, Miller DM. c-myc promoter binding protein regulates the cellular response to an altered glucose concentration. Biochemistry. 2007;46:8659–68.

    CAS  PubMed  Google Scholar 

  109. Babu JS, Sun T, Xu L, Datta SK. B cell stimulatory effects of alpha-enolase that is differentially expressed in NZB mouse B cells. Clin Immunol. 2002;104:293–304.

    CAS  PubMed  Google Scholar 

  110. Israelsen WJ, Vander Heiden MG. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43:43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dayton TL, Gocheva V, Miller KM, Israelsen WJ, Bhutkar A, Clish CB, et al. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 2016;30:1020–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang Z, Deng X, Liu Y, et al. PKM2, function and expression and regulation. Cell Biosci. 2016;9:52.

    Google Scholar 

  113. Angiari S, Runtsch MC, Sutton CE, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4 T cell pathogenicity and suppresses autoimmunity. Cell Metab. 2017;31:391–405.e8.

    Google Scholar 

  114. Le S, Zhang H, Huang X, et al. PKM2 activator TEPP-46 attenuates thoracic aortic aneurysm and dissection by inhibiting NLRP3 inflammasome-mediated IL-1 secretion. J Cardiovasc Pharmacol Ther. 2017;25:364–76.

    Google Scholar 

  115. Palsson-McDermott EM, Dyck L, Zasona Z, et al. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol. 2017;8:1300.

    PubMed  PubMed Central  Google Scholar 

  116. Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8 T cells requires an immediate-early glycolytic switch. Nat Immunol. 2013;14:1064–72.

    CAS  PubMed  Google Scholar 

  117. Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. ImmunoTargets Ther. 2015;4:101–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213:337–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282:9358–63.

    CAS  PubMed  Google Scholar 

  120. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2005;26:677–704.

    Google Scholar 

  121. Jialal I, Sokoll LJ. Clinical utility of lactate dehydrogenase: a historical perspective. Am J Clin Pathol. 2015;143:158–9.

    PubMed  Google Scholar 

  122. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathol. 2016;26:3–17.

    CAS  PubMed  Google Scholar 

  123. Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7:6124–36.

    PubMed  PubMed Central  Google Scholar 

  124. Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers. 2019;11:750.

    CAS  PubMed Central  Google Scholar 

  125. Gordon JS, Wood CT, Luc JG, et al. Clinical implications of LDH isoenzymes in hemolysis and continuous-flow left ventricular assist device-induced thrombosis. Artif Organs. 2017;44:231–8.

    Google Scholar 

  126. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2008;7:651–8.

    Google Scholar 

  127. Ding J, Karp JE, Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers: Sect Dis Markers. 2017;19:353–63.

    CAS  Google Scholar 

  128. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bronte V. Tumor cells hijack macrophages via lactic acid. Immunol Cell Biol. 2014;92:647–9.

    CAS  PubMed  Google Scholar 

  130. Pioli PA, Hamilton BJ, Connolly JE, et al. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1. J Biol Chem. 2002;277:35738–45.

    CAS  PubMed  Google Scholar 

  131. Song Y-J, Kim A, Kim G-T, et al. Inhibition of lactate dehydrogenase A suppresses inflammatory response in RAW 264.7 macrophages. Mol Med Rep. 2019;19:629–37.

    PubMed  Google Scholar 

  132. Daifuku M, Nishi K, Okamoto T, Sugahara T. Activation of J774.1 murine macrophages by lactate dehydrogenase. Cytotechnology. 2014;66:937–43.

    CAS  PubMed  Google Scholar 

  133. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein & Cell. 2017;9:216–37.

    Google Scholar 

  134. Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech. 2018;11:dmm033365.

    PubMed  PubMed Central  Google Scholar 

  135. Roche T, Hiromasa Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci. 2007;64:830–49.

    CAS  PubMed  Google Scholar 

  136. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL, Tumor and Angiogenesis Research Group. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia. 2005;7:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu X, Ma Q, Sun X, et al. Effects of recombinant Toxoplasma gondii citrate synthase I on the cellular functions of murine macrophages in vitro. Front Microbiol. 2017;8:1376.

    PubMed  PubMed Central  Google Scholar 

  138. Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O’Neill LA, et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab. 2019;1:16–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24:158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28:218–230.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ryan D, Lin T, Brownie E, et al. Mutually exclusive splicing generates two distinct isoforms of pig heart succinyl-CoA synthetase. J Biol Chem. 1997;272:21151–9.

    CAS  PubMed  Google Scholar 

  142. Janin M, Mylonas E, Saada V, et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol. 2013;32:297–305.

    PubMed  Google Scholar 

  143. Rohle D, Muller JP, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2017;18:225–42.

    CAS  PubMed  Google Scholar 

  145. Zheng PP, Weiden MVD, Spek PJVD, et al. Isocitrate dehydrogenase 1R132H mutation in microglia/macrophages in gliomas: indication of a significant role of microglia/macrophages in glial tumorigenesis. Cancer Biol Ther. 2012;13:836–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Shih AH, Shank KR, Meydan C, et al. AG-221, a small molecule mutant IDH2 inhibitor, remodels the epigenetic state of IDH2-mutant cells and induces alterations in self-renewal/differentiation in IDH2-mutant AML model in vivo. Blood. 2014;124:437437.

    Google Scholar 

  147. Wang F, Travins J, Barre BD, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2012;340:622–6.

    Google Scholar 

  148. Nishimura J. Succinyl-CoA synthetase structure-function relationships and other considerations. Adv Enzymol Relat Areas Mol Biol. 1986;58:141–72.

    CAS  PubMed  Google Scholar 

  149. Prados JCR, Traves PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185:605–14.

    Google Scholar 

  150. Igal RA. Stearoyl CoA desaturase-1: new insights into a central regulator of cancer metabolism. Biochim Biophys Acta. 2016;1861:1865–80.

    CAS  PubMed  Google Scholar 

  151. AL Johani AM, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28:831–42.

    CAS  Google Scholar 

  152. Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem Phys Lipids. 2016;197:3–12.

    CAS  PubMed  Google Scholar 

  153. Castro LFC, Wilson JM, Gonalves O, et al. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol. 2011;11:132.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Salmani Izadi M, Naserian AA, Nasiri MR, Majidzadeh Heravi R. An evolutionary relationship between stearoyl-CoA desaturase (SCD) protein sequences involved in fatty acid metabolism. Reports Biochem & Mol Biol. 2014;3:1–6.

    Google Scholar 

  155. Wu X, Zou X, Chang Q, et al. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes. Biomed Res Int. 2013;2013:856521.

    PubMed  PubMed Central  Google Scholar 

  156. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297:E28–37.

    CAS  PubMed  Google Scholar 

  157. Kalupahana NS, Wang S, Rahman SM, Moustaid-Moussa N. Function and regulation of macrophage stearoyl-CoA desaturase in metabolic disorders. In: Stearoyl-CoA desaturase genes in lipid metabolism. New York: Springer; 2010. p. 61–71.

    Google Scholar 

  158. Robichaud PP, Boulay K, Munganyiki J, Surette ME. Fatty acid remodeling in cellular glycerophospholipids following the activation of human T cells. J Lipid Res. 2013;54:2665–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Mesquita D, Cruvinel WM, Resende LS, et al. Follicular helper T cell in immunity and autoimmunity. Braz J Med Biol Res = Rev Bras de Pesqui medicas Biol. 2016;49:e5209.

    Google Scholar 

  161. Deng J, Wei Y, Fonseca VR, Graca L, Yu D. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019;15:475–90.

    CAS  PubMed  Google Scholar 

  162. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Sci. 2009;325:1006–10.

    CAS  Google Scholar 

  163. Henriquez-Rodriguez E, Tor M, Pena RN, Estany J. A polymorphism in the stearoyl-CoA desaturase gene promoter influences monounsaturated fatty acid content of Duroc Iberian hams. Span J Agric Res. 2015;13:e0404.

    Google Scholar 

  164. Yeoh BS, Saha P, Singh V, Xiao X, Ying Y, Vanamala JK, et al. Deficiency of stearoyl-CoA desaturase-1 aggravates colitogenic potential of adoptively transferred effector T cells. Am J Physiol Gastrointest Liver Physiol. 2016;311:G713–23.

    PubMed  PubMed Central  Google Scholar 

  165. Uryu S, Tokuhiro S, Oda T. Amyloid-specific upregulation of stearoyl coenzyme A desaturase-1 in macrophages. Biochem Biophys Res Commun. 2000;303:302–5.

    Google Scholar 

  166. Bogie JF, Grajchen E, Wouters E, et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med. 2017;217:e20191660.

    Google Scholar 

  167. Cruzat V, Macedo Rogero M, Noel Keane K, et al. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018;10:1564.

    PubMed Central  Google Scholar 

  168. Mates J, Segura J, Martin-Rufian M, et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med. 2013;13:514–34.

    CAS  PubMed  Google Scholar 

  169. Szeliga M, Albrecht J. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype. Neurochem Int. 2015;88:6–9.

    CAS  PubMed  Google Scholar 

  170. Amobonye A, Singh S, Pillai S. Recent advances in microbial glutaminase production and applications—a concise review. Crit Rev Biotechnol 120. 2019;39:944–63.

    CAS  PubMed  Google Scholar 

  171. Mats JM, Campos-Sandoval JA, Mrquez J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim et Biophys Acta Rev Cancer. 2018;1870:158–64.

    Google Scholar 

  172. Huang F, Zhang Q, Ma H, Lv Q, Zhang T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol. 2014;7:1093–100.

    PubMed  PubMed Central  Google Scholar 

  173. Klysz D, Tai X, Robert PA, et al. Glutamine-dependent -ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8:ra97.

    PubMed  Google Scholar 

  174. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014;40:692–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185:1037–44.

    CAS  PubMed  Google Scholar 

  176. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev. 2014;90:927–63.

  177. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2013;39:347–54.

    Google Scholar 

  178. Boada J, Roig T, Perez X, Gamez A, Bartrons R, Cascante M, et al. Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett. 2000;480:261–4.

    CAS  PubMed  Google Scholar 

  179. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53:421–36.

    CAS  PubMed  Google Scholar 

  180. Cho ES, Cha YH, Kim HS, Kim NH, Yook JI. The pentose phosphate pathway as a potential target for cancer therapy. Biomol & Ther. 2018;26:29–38.

    CAS  Google Scholar 

  181. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012;15:813–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Baardman J, Verberk S, Winther MD, Bossche JVD. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Atherosclerosis. 2019;287:e103.

    Google Scholar 

  183. Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle. 2012;12:3720–6.

    Google Scholar 

  184. Kochetov GA, Solovjeva ON. Structure and functioning mechanism of transketolase. Biochim Et Biophys Acta. 2014;1844:1608–18.

    CAS  Google Scholar 

  185. Xu P, Crawford M, Way M, Godovac-Zimmermann J, Segal AW, Radulovic M. Subproteome analysis of the neutrophil cytoskeleton. Proteomics. 2009;9:2037–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Riyapa D, Rinchai D, Muangsombut V, Wuttinontananchai C, Toufiq M, Chaussabel D, et al. Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One. 2019;14:e0221016.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Castanheira FV, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133:2178–85.

    CAS  PubMed  Google Scholar 

  188. Azevedo EP, Rochael NC, Costa ABG, et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J Biol Chem. 2015;290:22174–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Exp Med. 2007;204:i2i2.

    Google Scholar 

  190. Dong Y, Wang M. Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells by regulating the levels of NADPH and ribose-5-phosphate. Biomed Pharmacother. 2016;85:672–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues Dr. Chirag C. Patel and Dr. Im-Hong Sun at Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, and Dr. Min-hee Oh at Yale University for reading and editing the manuscript.

Funding

This work is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant number: 19/14755-0). V-A.O. is a fellow of the PEW Latin American Program, Pew Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Andrade-Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunometabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, R.W., Doretto-Silva, L., da Silva, E.M. et al. The Non-canonical Role of Metabolic Enzymes in Immune Cells and Its Impact on Diseases. Curr. Tissue Microenviron. Rep. 1, 221–237 (2020). https://doi.org/10.1007/s43152-020-00020-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00020-x

Keywords

Navigation