Skip to main content

Advertisement

Log in

Modulating Microenvironments for Treating Glioblastoma

  • Cell Behavior Manipulation (S Willerth, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on the development and progression of glioblastoma through the brain and glioma microenvironment. Specifically, we highlight how the tumor microenvironment contributes to the hallmarks of cancer in hopes of offering novel therapeutic options and tools to target.

Recent Findings

The hallmarks of cancer represent elements of cancer that contribute to the disease’s malignancy, yet elements within the brain tumor microenvironment, such as other cellular types as well as biochemical and biophysical cues that can each uniquely affect tumor cells, have not been well-described in this context and serve as potential targets for modulation.

Summary

Here, we highlight how the brain tumor microenvironment contributes to the progression and therapeutic response of tumor cells. Specifically, we examine these contributions through the lens of Hanahan and Weinberg’s “Hallmarks of Cancer” in order to identify potential novel targets within the brain that may offer a means to treat brain cancers, including the deadliest form of brain cancer, glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jain KK. A critical overview of targeted therapies for glioblastoma. Front Oncol. 2018. https://doi.org/10.3389/fonc.2018.00419.

  2. Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ, et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neuro-Oncol. 2012. https://doi.org/10.1007/s11060-011-0738-7.

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000. https://doi.org/10.1016/S0092-8674(00)81683-9.

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. https://doi.org/10.1016/j.cell.2011.02.013.

  5. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012. https://doi.org/10.1016/j.ccr.2012.02.022.

  6. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012. https://doi.org/10.1242/jcs.116392.

  7. Ruoslahti E. Brain extracellular matrix. Glycobiology. 1996. https://doi.org/10.1093/glycob/6.5.489.

  8. Bonneh-Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration. Brain Pathol. 2009. https://doi.org/10.1111/j.1750-3639.2008.00195.x.

  9. Barnes JM, Przybyla L, Weaver VM. Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci. 2017. https://doi.org/10.1242/jcs.191742(This review describes in detail key biomechanical properties of interest within the brain, specifically in cancer).

  10. Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia A, McNamara J, White L (2008) Neuroscience 4th edition.

  11. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2017.02.009(This review provides a perspective of the microenvironment in brain tumors).

  12. Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 2007. https://doi.org/10.1007/s00401-007-0293-7.

  13. Wippold FJ, Cairns N, Vo K, Holtzman DM, Morris JC. Neuropathology for the neuroradiologist: plaques and tangles. Am J Neuroradiol. 2008. https://doi.org/10.3174/ajnr.A0781.

  14. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000. https://doi.org/10.1016/S0002-9440(10)65006-7.

  15. Munson JM, Bellamkonda RV, Swartz MA. Interstitial flow in a 3d microenvironment increases glioma invasion by a cxcr4-dependent mechanism. Cancer Res. 2013. https://doi.org/10.1158/0008-5472.CAN-12-2838.

  16. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015. https://doi.org/10.1038/nature14432.

  17. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016. https://doi.org/10.1016/j.tins.2016.07.001.

  18. Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a new player in neurophysiology. Neuron. 2018. https://doi.org/10.1016/j.neuron.2018.09.022.

  19. Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Silva WN, Mintz A, et al. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis. 2018. https://doi.org/10.1007/s10456-018-9621-x(This review highlights the role of pericytes within the tumor microenvironment and their reprogramming in glioblastoma).

  20. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013. https://doi.org/10.1016/j.cell.2013.02.021.

  21. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of Glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010. https://doi.org/10.1016/j.ccr.2009.12.020.

  22. Zepecki JP, Snyder KM, Moreno MM, Fajardo E, Fiser A, Ness J, et al. Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene. 2019. https://doi.org/10.1038/s41388-018-0546-z.

  23. Shankar A, Jain M. Anti-VEGFR2 driven nuclear translocation of VEGFR2 and acquired malignant hallmarks are mutation dependent in glioblastoma. J Cancer Sci Ther. 2016. https://doi.org/10.4172/1948-5956.1000410.

  24. Minata M, Audia A, Shi J, et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 2019. https://doi.org/10.1016/j.celrep.2019.01.076(This article highlights the link between ionizing radiation and its contribution to glioma stem cell plasticity, which leads to phenotypes that drive recurrence and resistance).

  25. Audia A, Conroy S, Glass R, Bhat KPL. The impact of the tumor microenvironment on the properties of glioma stem-like cells. Front Oncol. 2017. https://doi.org/10.3389/fonc.2017.00143.

  26. Chanmee T, Ontong P, Izumikawa T, et al. Hyaluronan production regulates metabolic and cancer stem-like properties of breast cancer cells via hexosamine biosynthetic pathway-coupled HIF-1 signaling. J Biol Chem. 2016;291:24105–20 (This article describes how hyaluronan is directly linked to cancer hallmarks).

    Article  CAS  Google Scholar 

  27. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J. 2011;278:1429–43.

    Article  CAS  Google Scholar 

  28. Skandalis SS, Karalis TT, Chatzopoulos A, Karamanos NK. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal. 2019. https://doi.org/10.1016/j.cellsig.2019.109377.

  29. Day BW, Lathia JD, Bruce ZC, et al. The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathol. 2019. https://doi.org/10.1007/s00401-019-02069-x(This article highlights another glycocalyx biopolymer other than hyaluronan involved in the maintenance of stem cell phenotype).

  30. Saleh A, Marhuenda E, Fabre C, Hassani Z, Weille J, Boukhaddaoui H, et al. A novel 3D nanofibre scaffold conserves the plasticity of glioblastoma stem cell invasion by regulating galectin-3 and integrin-β1 expression. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-51108-w.

  31. Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-09853-z.

  32. Murat A, Migliavacca E, Hussain SF, Heimberger AB, Desbaillets I, Hamou MF, et al. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS One. 2009. https://doi.org/10.1371/journal.pone.0005947.

  33. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019. https://doi.org/10.1101/gad.324301.119.

  34. Carén H, Pollard SM, Beck S. The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. Mol Asp Med. 2013. https://doi.org/10.1016/j.mam.2012.06.007.

  35. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013. https://doi.org/10.1016/j.cell.2013.09.034.

  36. Blanc JL, Wager M, Guilhot J, Kusy S, Bataille B, Chantereau T, et al. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas. J Neuro-Oncol. 2004. https://doi.org/10.1023/B:NEON.0000033385.37098.85.

  37. Feng J, Zhang Y, She X, Sun Y, Fan L, Ren X, et al. Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment. Oncogene. 2019. https://doi.org/10.1038/s41388-018-0423-9.

  38. Zhu H, Wang H, Huang Q, Liu Q, Guo Y, Lu J, et al. Transcriptional repression of p53 by PAX3 contributes to gliomagenesis and differentiation of glioma stem cells. Front Mol Neurosci. 2018. https://doi.org/10.3389/fnmol.2018.00187.

  39. Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential epigenetic-based therapeutic targets for glioma. Front Mol Neurosci. 2018. https://doi.org/10.3389/fnmol.2018.00408.

  40. Warburg O. Injuring of respiration the origin of cancer cells. Science (80-). 1956;123:309–14.

    Article  CAS  Google Scholar 

  41. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012. https://doi.org/10.1016/j.ccr.2012.02.014.

  42. Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem. 2018. https://doi.org/10.2174/1568026618666180523111351.

  43. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016. https://doi.org/10.1007/s00401-016-1545-1.

  44. Abbadi S, Rodarte JJ, Abutaleb A, Lavell E, Smith CL, Ruff W, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res. 2014. https://doi.org/10.1158/1541-7786.MCR-14-0106-T.

  45. Daniele S, Giacomelli C, Zappelli E, Granchi C, Trincavelli ML, Minutolo F, et al. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death. Sci Rep. 2015. https://doi.org/10.1038/srep15556.

  46. •• Hoang-Minh LB, Siebzehnrubl FA, Yang C, et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 2018. https://doi.org/10.15252/embj.201798772(This article highlights how cancer cells can utilize oxidative phosphorylation through slow-cycling as opposed to the canonical thought of cancer cells mostly following glycolysis and being fast cycling).

  47. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, et al. Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain. 2011. https://doi.org/10.1093/brain/awr081.

  48. Sabelström H, Quigley DA, Fenster T, Foster DJ, Fuchshuber CAM, Saxena S, et al. High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Exp Cell Res. 2019. https://doi.org/10.1016/j.yexcr.2019.03.003.

  49. Offer S, Menard JA, Pérez JE, de Oliveira KG, Chandran VI, Johansson MC, et al. Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration. J Exp Clin Cancer Res. 2019. https://doi.org/10.1186/s13046-019-1228-6.

  50. Chen W, Xia T, Wang D, Huang B, Zhao P, Wangc J, et al. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.11515.

  51. Wu CY-J, Chen C-H, Lin C-Y, Feng L-Y, Lin Y-C, Wei K-C, et al. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase-2. Neuro-Oncology. 2019. https://doi.org/10.1093/neuonc/noz189.

  52. Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: implications for therapeutic approaches via gap junctions. Cancer Lett. 2019. https://doi.org/10.1016/j.canlet.2018.10.043.

  53. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 2016. https://doi.org/10.1038/onc.2015.210.

  54. Nakod PS, Kim Y, Rao SS. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett. 2018;429:41–53.

    Article  CAS  Google Scholar 

  55. Cong D, Zhu W, Shi Y, Pointer KB, Clark PA, Shen H, et al. Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H+ extrusion, cell migration and survival. Carcinogenesis. 2014. https://doi.org/10.1093/carcin/bgu089.

  56. Rao JU, Coman D, Walsh JJ, Ali MM, Huang Y, Hyder F. Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-07609-7(This article highlights pH, which is not largely included in hallmarks, but of importance, especially in the context of treatment).

  57. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011;18:829–40.

    Article  CAS  Google Scholar 

  58. Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z. New trends in glioma cancer therapy: targeting Na+/H + exchangers. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29014.

  59. Riemann A, Schneider B, Gündel D, Stock C, Gekle M, Thews O. Acidosis promotes metastasis formation by enhancing tumor cell motility. Adv Exp Med Biol. 2016. https://doi.org/10.1007/978-1-4939-3023-4_27.

  60. Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS, et al. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na + /H + exchanger isoform. Carcinogenesis. 2016. https://doi.org/10.1093/carcin/bgw068.

  61. Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res. 2014. https://doi.org/10.2147/CMAR.S65444.

  62. Wu A, Maxwell R, Xia Y, Cardarelli P, Oyasu M, Belcaid Z, et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J Neuro-Oncol. 2019. https://doi.org/10.1007/s11060-019-03172-5.

  63. •• Kingsmore KM, Vaccari A, Abler D, Cui SX, Epstein FH, Rockne RC, et al. MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioeng. 2018. https://doi.org/10.1063/1.5023503(This article highlights a new method to map interstitial fluid flow with MRI, which can be reconstructed and clinically translated).

  64. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014. https://doi.org/10.1016/B978-0-12-411638-2.00002-1.

  65. •• Cornelison RC, Brennan CE, Kingsmore KM, Munson JM. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-35141-9(This article highlights how the recently novel technique of convective enhanced delivery (CED) mimics interstitial fluid flow and stimulates invasion through CXCR4/CXCL12 signaling axis both in vivo and in patient samples).

  66. Gritsenko PG, Friedl P. Adaptive adhesion systems mediate glioma cell invasion in complex environments. J Cell Sci. 2018. https://doi.org/10.1242/jcs.216382.

  67. Paszek MJ, DuFort CC, Rossier O, et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature. 2014;511:319–25.

    Article  CAS  Google Scholar 

  68. •• Barnes JM, Kaushik S, Bainer RO, et al. A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol. 2018. https://doi.org/10.1038/s41556-018-0183-3(This article discusses the link between the glycocalyx and its role in glioblastoma).

  69. •• Kingsmore KM, Logsdon DK, Floyd DH, Peirce SM, Purow BW, Munson JM. Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion: via CXCR4, CXCL12, and CD44-mediated mechanisms. Integr Biol (United Kingdom). 2016. https://doi.org/10.1039/c6ib00167j(This article describes interstitial fluid flow and the link between radiation, autologous chemotaxis, and invasion in glioma).

  70. Gupta K, Burns TC. Radiation-induced alterations in the recurrent glioblastoma microenvironment: therapeutic implications. Front Oncol. 2018. https://doi.org/10.3389/fonc.2018.00503.

  71. • Yoo KC, Suh Y, An Y, et al. Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation. Oncogene. 2018. https://doi.org/10.1038/s41388-018-0199-y(This article highlights how radiation can cause tumor microenvironmental changes in glioma).

  72. Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther. 2016;164:204–25.

    Article  CAS  Google Scholar 

  73. Mariotti S, Barravecchia I, Vindigni C, Pucci A, Balsamo M, Libro R, et al. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion. Oncotarget. 2016;7:1808–25.

    Article  Google Scholar 

  74. Barravecchia I, Mariotti S, Pucci A, Scebba F, de Cesari C, Bicciato S, et al. MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response. Biochim Biophys Acta Mol basis Dis. 2019;1865:2111–24.

    Article  CAS  Google Scholar 

  75. Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: microenvironment and niche concept. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11010005.

  76. • Talasila KM, Røsland GV, Hagland HR, et al. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro-Oncology. 2017. https://doi.org/10.1093/neuonc/now175(This article links angiogenesis and metabolism together in glioma).

  77. Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aal3604.

  78. • Moyes KW, Davis A, Hoglund V, et al. Effects of tumor grade and dexamethasone on myeloid cells in patients with glioma. Oncoimmunology. 2018. https://doi.org/10.1080/2162402X.2018.1507668(This article explores how dexamethasone can impact immune cells in glioma outside of the tumor itself, which highlights the need for decoupling the impact of treatment versus the tumor on the tumor microenvironment need to make sure the treatment is effective at treating the tumor as opposed to disguising the effects).

  79. Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: not only in tumor immunity. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.01099.

  80. Tesi RJ. MDSC: the most important cell you have never heard of. Trends Pharmacol Sci. 2019. https://doi.org/10.1016/j.tips.2018.10.008.

  81. Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis article. Nat Med. 2018. https://doi.org/10.1038/s41591-018-0044-4.

  82. • Henrik Heiland D, Ravi VM, Behringer SP, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10493-6(This article discusses the role of tumor-associated astrocytes and their role in glioma, particularly through the STAT pathway).

  83. • Sena IFG, Paiva AE, Prazeres PHDM, Azevedo PO, Lousado L, Bhutia SK, et al. Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med. 2018. https://doi.org/10.1002/cam4.1375(This review discusses the role of tumor-associated pericytes and their role in glioma).

  84. Valdor R, García-Bernal D, Bueno C, Ródenas M, Moraleda JM, Macian F, et al. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.19804.

  85. Valdor R, García-Bernal D, Riquelme D, Martinez CM, Moraleda JM, Cuervo AM, et al. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1903542116.

  86. Michaelis M, Doerr HW, Cinatl J. The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia. 2009. https://doi.org/10.1593/neo.81178.

  87. Krenzlin H, Behera P, Lorenz V, Passaro C, Zdioruk M, Nowicki MO, et al. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest. 2019. https://doi.org/10.1172/JCI123375.

  88. • Cha J, Kim P. Time series assessment of the effects of hypoxic stress on glioma tumorsphere development within engineered microscale niches. Biomaterials. 2019. https://doi.org/10.1016/j.biomaterials.2018.12.018(This article highlights a model that can recapitulate cancer hallmarks simultaneously and provide high-throughput assessment of glioma).

  89. Gritsenko P, Leenders W, Friedl P. Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem Cell Biol. 2017. https://doi.org/10.1007/s00418-017-1604-2.

  90. •• Lee C, Abelseth E, de la Vega L, Willerth SM. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Mater Today Chem. 2019;12:78–84 (This article highlights a novel technique using bioprinting for recapitulating a 3D model in glioma).

    Article  CAS  Google Scholar 

  91. •• Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3:509–19 (This article highlights a novel technique using bioprinting for recapitulating a patient-specific 3D model in glioma).

    Article  CAS  Google Scholar 

  92. Kim SS, Harford JB, Moghe M, Slaughter T, Doherty C, Chang EH. A tumor-targeting nanomedicine carrying the p53 gene crosses the blood–brain barrier and enhances anti-PD-1 immunotherapy in mouse models of glioblastoma. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32531.

  93. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015. https://doi.org/10.1158/1078-0432.CCR-15-0428.

  94. Kamran N, Kadiyala P, Saxena M, Candolfi M, Li Y, Moreno-Ayala MA, et al. Immunosuppressive myeloid cells’ blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol Ther. 2017. https://doi.org/10.1016/j.ymthe.2016.10.003.

  95. Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 2018. https://doi.org/10.1084/jem.20171440.

  96. Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, et al. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett. 2018. https://doi.org/10.1016/j.canlet.2018.07.034.

  97. Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1721434116.

  98. •• Birbrair A, Sattiraju A, Zhu D, et al. Novel peripherally derived neural-like stem cells as therapeutic carriers for treating glioblastomas. Stem Cells Transl Med. 2017;6:471–81 (This article discusses a novel technique with neural-like stem cells from the periphery can be genetically engineered to be therapeutic agents in glioma).

    Article  CAS  Google Scholar 

  99. • Hong B, Muili K, Bolyard C, et al. Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Ther - Oncolytics. 2019. https://doi.org/10.1016/j.omto.2018.11.005(This article highlights the use of oncolytic HSV therapy as a method to reduce inflammation in glioma tumor microenvironment).

  100. • Navone SE, Guarnaccia L, Cordiglieri C, et al. Aspirin affects tumor angiogenesis and sensitizes human glioblastoma endothelial cells to temozolomide, bevacizumab, and sunitinib, impairing vascular endothelial growth factor-related signaling. World Neurosurg. 2018. https://doi.org/10.1016/j.wneu.2018.08.080(This article highlights the repurposing of aspirin as a potential treatment to aid in overcoming drug resistance and angiogenesis in glioma).

  101. • Säälik P, Lingasamy P, Toome K, et al. Peptide-guided nanoparticles for glioblastoma targeting. J Control Release. 2019. https://doi.org/10.1016/j.jconrel.2019.06.018(This article highlights tumor-homing nanoparticles that are novel agents in therapeutics against glioblastoma).

  102. • Mercurio L, Ajmone-Cat MA, Cecchetti S, et al. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J Exp Clin Cancer Res. 2016. https://doi.org/10.1186/s13046-016-0326-y(This article highlights a specific peptide inhibitor targeting CXCR4 in glioma).

  103. • Lucki NC, Villa GR, Vergani N, et al. A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1816626116(This article focuses on a therapeutic that is cell-type specific as potential treatment in glioma).

  104. •• Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019. https://doi.org/10.1038/s41586-019-1563-y(This article is the first to link neuronal electrochemical signaling in glioma progression).

  105. • Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015. https://doi.org/10.1016/j.cell.2015.04.012(This article highlights how neurons can stimulate glioma growth through neuroligin-3, a mitogen secreted by neurons).

  106. Agrawal R, Garg A, Benny Malgulwar P, Sharma V, Sarkar C, Kulshreshtha R. p53 and miR-210 regulated NeuroD2, a neuronal basic helix–loop–helix transcription factor, is downregulated in glioblastoma patients and functions as a tumor suppressor under hypoxic microenvironment. Int J Cancer. 2018. https://doi.org/10.1002/ijc.31209.

  107. Zhao J, He H, Zhou K, Ren Y, Shi Z, Wu Z, et al. Neuronal transcription factors induce conversion of human glioma cells to neurons and inhibit tumorigenesis. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0041506.

  108. • Cheng X, Tan Z, Huang X, Yuan Y, Qin S, Gu Y, et al. Inhibition of glioma development by ASCL1-mediated direct neuronal reprogramming. Cells. 2019. https://doi.org/10.3390/cells8060571(This article explores reprogramming glioma cells by leveraging ASCL-1, a neuronal transcription factor, for terminal differentiation and inhibiting glioma progression).

  109. • Lee C, Robinson M, Willerth SM. Direct reprogramming of glioblastoma cells into neurons using small molecules. ACS Chem Neurosci. 2018;9:3175–85 (This article highlights the development of a chemically engineered small molecule that can reprogram glioma cells into neurons).

    Article  CAS  Google Scholar 

  110. • Lai SW, Liu YS, Lu DY, Tsai CF. Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin. Nutrients. 2019. https://doi.org/10.3390/nu11061343(This article highlights the impact of a native molecule in the brain, melatonin, on the tumor microenvironment in glioma).

  111. Martín V, Herrera F, Carrera-Gonzalez P, García-Santos G, Antolín I, Rodriguez-Blanco J, et al. Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res. 2006. https://doi.org/10.1158/0008-5472.CAN-05-2354.

  112. Wang J, Hao H, Yao L, Zhang X, Zhao S, Ling EA, et al. Melatonin suppresses migration and invasion via inhibition of oxidative stress pathway in glioma cells. J Pineal Res. 2012;53:180–7. https://doi.org/10.1111/j.1600-079X.2012.00985.x.

    Article  PubMed  CAS  Google Scholar 

  113. Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncol. 1996. https://doi.org/10.1159/000227533.

  114. • Ben-Shaanan TL, Schiller M, Azulay-Debby H, et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05283-5(This article discusses links to a physiological process in the brain and how it can positively impact cancer).

Download references

Funding

This work supported by Grant NCI R37 222563 to JMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Munson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

No human or animals were used in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection Cell Behavior Manipulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, L.M., Munson, J. Modulating Microenvironments for Treating Glioblastoma. Curr. Tissue Microenviron. Rep. 1, 99–111 (2020). https://doi.org/10.1007/s43152-020-00010-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00010-z

Keywords

Navigation