Skip to main content
Log in

Baggage Carousel Assignment at Airports: Model and Case Study

  • Original Research
  • Published:
Operations Research Forum Aims and scope Submit manuscript

Abstract

Baggage operations at an airport are split into several different sub problems. The problem of assigning baggage carousels to each arriving flight is part of the important passenger arrival process. This article presents a mixed integer formulation for the underlying decision problem which aims at balancing customer satisfaction with operational needs. We introduce a static model that fulfills the different real-world requirements and balances the different objective criteria. It is shown how the model can be used in the dynamic environment of an airport. Because of the high degree of uncertainty at an airport, the issue of stability is discussed in detail. In a case study several scenarios with different time horizons and times of decision were studied. The model was verified with data from Frankfurt Airport and is successfully running as part of the decision support system at Frankfurt Airport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Arrival at parking position

  2. Landing at airport

  3. Ten minutes before estimated landing

  4. Thirty minutes before estimated landing

References

  1. Abdelghany A, Abdelghany K, Narasimhan R (2006) Scheduling baggage-handling facilities in congested airports. J Air Transp Manag 12(2):76–81

    Article  Google Scholar 

  2. Fraport A.G. (2012) Baggage management and infrastructure. Web

  3. Andreatta G, Brunetta L, Righi L (2007) Evaluating terminal management performances using SLAM: the case of Athens International Airport. Comput Oper Res 34:1532–1550

    Article  Google Scholar 

  4. Ascó A, Atkin JAD, Burke EK (2011) The airport baggage sorting station allocation problem. In: Proceedings of the 5th Multidisciplinary International Scheduling Conference. pp 419–444

  5. Barth T (2013) Optimal assignment of incoming flights to baggage carousels at airports. Technical Report Report 5 DTU Management Engineering

  6. Barth T, Franz M (2008) Gemischt-ganzzahlige Optimierung in Echtzeit am Beispiel der Steuerung des Transfergepäckumschlags am Frankfurter Flughafen (In German). In: Mattfeld D (ed) Gemeinsame Fachtagung der Gesellschaft für Operations Research und der Deutschen Gesellschaft für System Dynamics. Institut für Wirtschaftsinformatik, Braunschweig, pp 38–66

  7. Barth T, Pisinger D (2012) Scheduling of outbound luggage handling at airports. In: Klatte D, Lüthi H-J, Schmedders K (eds) Operations research proceedings 2011. https://doi.org/10.1007/978-3-642-29210-1. Springer-Verlag, Berlin Heidelberg 2012, pp 251–256

  8. Delonge F (2014) Balancing load distribution on baggage belts at airports. In: Helber S, et al. (eds) Operations Research Proceedings 2012. https://doi.org/10.1007/978-3-319-00795-3. Springer International Publishing, Switzerland 2014, pp 499–505

  9. Diepen G, Van Den Akker JM, a Hoogeveen JA, Smeltink JW (2012) Finding a robust assignment of flights to gates at Amsterdam Airport Schiphol. J Sched 15(6):703–715

    Article  Google Scholar 

  10. Frey M, Artigues C, Kolisch R, Lopez P (2010) Scheduling and planning the outbound baggage process at international airports. In: 2010 IEEE International Conference on Industrial Engineering and Engineering Management. pp 2129–2133

  11. Frey M, Kiermaier F, Kolisch R (2017) Optimizing inbound baggage handling at airports. Transp Sci 51(4):1210–1225

    Article  Google Scholar 

  12. Ghobrial A, Daganzo CF, Kazimi T (1982) Baggage claim area congestion at airports: an empirical model of mechanized claim device performance. Transp Sci 16(2):246–260

    Article  Google Scholar 

  13. Huang E, Liu I, Lin JT (2018) Robust model for the assignment of outgoing flights on airport baggage unloading areas. Transp Res Part E Logist Transp Rev 115:110–125

    Article  Google Scholar 

  14. Huang E, Mital P, Goetschalckx M, Wu K (2016) Optimal assignment of airport baggage unloading zones to outgoing flights. Transp Res Part E Logist Transp Rev 94:110–122

    Article  Google Scholar 

  15. Malandri C, Briccoli M, Mantecchini L, Paganelli F (2018) A discrete event simulation model for inbound baggage handling. Transp Res Procedia 35:295–304

    Article  Google Scholar 

  16. Pentico DW (2007) Assignment problems: a golden anniversary survey. European J Oper Res 176(2):774–793

    Article  Google Scholar 

  17. Pisinger D, Rude SH (2020) Advanced algorithms for improved baggage handling. J Airport Manag 14

  18. Pisinger D, Scatamacchia R (2020) The baggage belt assignment problem. European J Oper Res, (submitted). arXiv:2006.03365

  19. SITA (2016) Air transport industry insights, the passenger IT trend survey 2016. https://www.sita.aero/resources/type/surveys-reports/passenger-it-trends-survey-2016. (accessed 14th April, 2020)

  20. Tamiz M, Jones D, Romero C (1998) Goal programming for decision making: an overview of the current state-of-the-art. Eur J Oper Res 111 (3):569–581

    Article  Google Scholar 

  21. Tošić V (1992) A review of airport passenger terminal operations analysis and modelling. Transp Res Part A Policy Pract 26(1):3–26

    Article  Google Scholar 

  22. Wang J, Cao J, Wang S, Yao Z, Li W (2020) IRDA: Incremental Reinforcement Learning for Dynamic Resource Allocation. IEEE Transactions on Big Data

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pisinger.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The AIROYoung Experience: Operations Research for Young Enthusiasts

Appendices

Appendix 1. Notation

All parameters and variables are defined in the main text, but for ease of reference, an overview is given in Tables 67, and 8.

Table 6 List of indices and sets
Table 7 List of parameters
Table 8 List of variables

Appendix 2. Complete Model

For the sake of completeness we here present the complete model as described in the paper:

$$ \begin{array}{@{}rcl@{}} &\min& \underset{a\in{A}_, c\in{C}}{\sum} n_{c} \cdot w_{c} \cdot o_{a,c} \cdot x_{a} + \underset{s\in{S}}{\sum} w_{s} \underset{r\in{R_{s}}, t\in{T}}{\sum} y_{r, t}+ w^{BH} \underset{h\in{H}}{\sum} y_{h}^{BH} \\&&+ w^{BC} \underset{h\in{H}}{\sum} {y}_{h}^{BC} \end{array} $$
(15)
$$ \begin{array}{@{}rcl@{}} &\text{s.t.}& \underset{a\in A_{f}}{\sum} x_{a} = 1 \forall{f\in{F}} \end{array} $$
(16)
$$ \begin{array}{@{}rcl@{}} &&\underset{a\in{A}}{\sum} u_{a, r, t} \cdot x_{a} \leq CAP_{r,t} + y_{r, t} \quad \forall{r\in{R_{s}}}, \forall{t\in{T}} \end{array} $$
(17)
$$ \begin{array}{@{}rcl@{}} &&y^{BH,mean} = \frac{{\sum}_{a\in{A}, h\in{H}, t\in{T}} u_{a, h, t} \cdot x_{a} }{{\sum}_{h\in{H}, t\in{T}}CAP_{h,t}} \end{array} $$
(18)
$$ \begin{array}{@{}rcl@{}} &&y^{BH,mean} + {y}_{h}^{BH,+} - {y}_{h}^{BH,-} = \frac{{\sum}_{a\in{A}, {t\in{T}}} u_{a, h, t} \cdot x_{a} } {{\sum}_{{t\in{T}}} CAP_{h,t}} \quad \forall{h\in{H}} \end{array} $$
(19)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BH} = {y}_{h}^{BH,+} + {y}_{h}^{BH,-} \quad \forall{h\in{H}} \end{array} $$
(20)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BC,max} \geq \frac{{\sum}_{a\in{A}, t\in{T}} u_{a, b, t} \cdot x_{a}}{{\sum}_{t\in{T}} CAP_{b, t}}\quad \forall{h\in{H}}, {b\in{B_{h}}} \end{array} $$
(21)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BC,min} \leq \frac{{\sum}_{a\in{A}, t\in{T}} u_{a, b, t} \cdot x_{a}}{{\sum}_{t\in{T}} CAP_{b, t}} \quad \forall{h\in{H}}, {b\in{B_{h}}} \end{array} $$
(22)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BC} = {y}_{h}^{BC,max} - {y}_{h}^{BC,min} \forall{h\in{H}} \end{array} $$
(23)
$$ \begin{array}{@{}rcl@{}} &&\underset{a\in{A}}{\sum} u_{a, b, t, bl} \cdot x_{a} \leq 1 + y_{b, t, bl} \quad \forall{h\in{H}},{b\in{B_{h}}}, {t\in{T}}, {bl\in{Bl}} \end{array} $$
(24)
$$ \begin{array}{@{}rcl@{}} &&y^{BH,mean} \geq 0 \end{array} $$
(25)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BH} \geq 0, \quad {y}_{h}^{BH,+} \geq 0, \quad {y}_{h}^{BH,-} \geq 0 \quad \forall{h\in{H}} \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} &&{y}_{h}^{BC} \geq 0, \quad {y}_{h}^{BC,max} \geq 0, \quad {y}_{h}^{BC,min} \geq 0 \quad \forall{h\in{H}} \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} &&x_{a}\in{\{0,1\}} \quad \forall{a\in{A}} \end{array} $$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, T.C., Pisinger, D. Baggage Carousel Assignment at Airports: Model and Case Study. SN Oper. Res. Forum 2, 5 (2021). https://doi.org/10.1007/s43069-020-00040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43069-020-00040-1

Keywords

Navigation