Skip to main content
Log in

Toeplitz operators between large Fock spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper, we give a complete characterization of the bounded and compact Toeplitz operators between different large Fock spaces \(F_\omega ^p\) and \(F_\omega ^q,\) with \(0<p,q\le \infty ,\) in terms of average functions, certain generalized Berezin transforms and Carleson measures. We characterize the essential norms of Toeplitz operators from \(F_\omega ^p\) into \(F_\omega ^q,\) for \(0<p,q\le \infty ,\) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroussi, H., Tong, C.: Weighted composition operators between large Fock spaces in several complex variables. J. Funct. Anal. 277, 3436–3466 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bauer, W., Coburn, L., Isralowitz, J.: Heat flow, BMO, and the compactness of Toeplitz operators. J. Funct. Anal. 259, 57–78 (2010). (2000), 100–120

  3. Bommier, H., Youssfi, H., Zhu, K.: Sarason’s Toeplitz product problem for a class of Fock spaces. Bull. Sci. Math. 141, 408–442 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cowen, C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions, 1–400. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  5. DallAra, G.M.: Pointwise estimates of weighted Bergman kernels in several complex variables. Adv. Math. 285, 1706–1740 (2015)

    Article  MathSciNet  Google Scholar 

  6. El-Falla, H.O., Mahzouli, H., Marrhich, I., Naqos, H.: Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces. J. Funct. Anal. 270, 4614–4630 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integral Equ. Oper. Theory 70, 541–559 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hu, Z., Lv, X.: Toeplitz Operators on Fock Spaces \(F^p(\varphi )\). Integral Equ. Oper. Theory 80, 33–59 (2014)

    Article  Google Scholar 

  9. Hu, Z., Lu, J.: Essential norm of Toeplitz operators on the Fock spaces. Integr. Equ. Oper. Theory 83, 197–210 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hu, Z., Lu, J.: Positive Toeplitz operators between different doubling Fock spaces. Taiwan. J. Math. 21, 467–487 (2017)

    Article  MathSciNet  Google Scholar 

  11. Isralovitz, J., Zhu, K.: Toeplitz operators on the Fock space. Integr. Equ. Oper. Theory 66, 593–611 (2010)

    Article  MathSciNet  Google Scholar 

  12. Khoi, L. H., Thom, L. T. H., Tien, P. T.: Weighted composition operators between Fock spaces \(F^\infty ({C\mathit{}) and F^p ({C}})\). Int. J. Math. 30(2019)

  13. Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Michigan Math. J. 40, 333–358 (1993)

    Article  MathSciNet  Google Scholar 

  14. Lv, X.: Bergman projections on weighted Fock spaces in several complex variables. J. Inequal. Appl. 286(2017)

  15. McCarthy, C.A.: \(C_p\). Israel J. Math. 5, 249–271 (1967)

    Article  MathSciNet  Google Scholar 

  16. Mengestie, T.: On Toeplitz operators between Fock spaces. Integral Equ. Oper. Theory 78, 213–224 (2014)

    Article  MathSciNet  Google Scholar 

  17. Schuster, A., Varolin, D.: Toeplitz operators and Carleson measures on generalized Bargman-Fock spaces. Integr. Equ. Oper. Theory 72, 363–392 (2012)

    Article  Google Scholar 

  18. Zhu, K.: Operators Theory in Function Spaces, 2nd edn. American Mathematical Society, Providence, RI (2007)

    Book  Google Scholar 

  19. Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank so much the editor and referee for the comments and suggestions that led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezhong Tong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by Jose Bonet.

Tong was supported in part by Natural Science Foundation of Hebei Province (Grant No. A2020202005), Natural Science Foundation of Tianjin City (Grant No. 20JCYBJC00750) and Overseas Returnees Program of Hebei Province (Grant No. C201809).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroussi, H., He, H., Li, J. et al. Toeplitz operators between large Fock spaces. Banach J. Math. Anal. 16, 32 (2022). https://doi.org/10.1007/s43037-022-00187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00187-5

Keywords

Mathematics Subject Classification

Navigation