Abstract
The present work either extends or improves several results on lineability of differentiable functions and derivatives enjoying certain special properties. Among many other results, we show that there exist large algebraic structures inside the following sets of special functions: (1) The class of differentiable functions with discontinuous derivative on a set of positive measure, (2) the family of differentiable functions with a bounded, non-Riemann integrable derivative, (3) the family of functions from (0, 1) to \(\mathbb {R}\) that are not derivatives, or (4) the family of mappings that do not satisfy Rolle’s theorem on real infinite dimensional Banach spaces. Several examples and graphics illustrate the obtained results.
This is a preview of subscription content, access via your institution.




Notes
Recall that a cone is a set endowed with two operations, addition and multiplication by positive scalars, which fulfill the usual properties (commutativity, associativity, existence of neutral element, etc.). If this set contains a linearly independent subset of infinite cardinality, the cone is said to be infinite. The dimension of the cone is the maximal possible cardinality of such a linearly independent set. In this paper, we shall say that a set M is strongly \(\mathfrak {c}\)-coneable whenever it contains (except for 0) a cone P of dimension \(\mathfrak {c}\) and this cone contains \(\mathfrak {c}\) algebraically independent elements as well (and, also, every non-trivial algebraic combination of elements of P, of positive coefficients, must belong to M).
References
Aizpuru, A., Pérez-Eslava, C., Seoane-Sepúlveda, J.B.: Linear structure of sets of divergent sequences and series. Linear Algebra Appl. 418(2–3), 595–598 (2006)
Aron, R.M., Bernal González, L., Pellegrino, D.M., Seoane Sepúlveda, J.B.: Lineability the search for linearity in mathematics. Monographs and research notes in mathematics, p. xix+308. CRC Press, Boca Raton (2016)
Aron, R.M., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Lineability and spaceability of sets of functions on \(\mathbb{R}\). Proc. Am. Math. Soc. 133(3), 795–803 (2005)
Azagra, D.: Smooth negligibility and subdifferential calculus in Banach spaces, with applications. Thesis (Ph.D.)–Universidad Complutense de Madrid, Madrid (1997)
Azagra, D., Gómez, J., Jaramillo, J.A.: Rolle’s theorem and negligibility of points in infinite-dimensional Banach spaces. J. Math. Anal. Appl. 213(2), 487–495 (1997)
Azagra, D., Jiménez-Sevilla, M.: The failure of Rolle’s theorem in infinite-dimensional Banach spaces. J. Funct. Anal. 182(1), 207–226 (2001)
Bastin, F., Conejero, J.A., Esser, C., Seoane-Sepúlveda, J.B.: Algebrability and nowhere Gevrey differentiability. Israel J. Math. 205(1), 127–143 (2015)
Bernal-González, L., Bonilla, A., López-Salazar, J., Seoane-Sepúlveda, J.B.: Nowhere hölderian functions and Pringsheim singular functions in the disc algebra. Monatsh. Math. 188(4), 591–609 (2019)
Bernal-González, L., Cabana-Méndez, H.J., Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B.: On the dimension of subspaces of continuous functions attaining their maximum finitely many times. Trans. Am. Math. Soc. 373(5), 3063–3083 (2020)
Bernal-González, L., Fernández-Sánchez, J., Seoane-Sepúlveda, J.B., Trutschnig, W.: Highly tempering infinite matrices II: from divergence to convergence via Toeplitz-Silverman matrices. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4), 202 (2020)
Bernal-González, L., Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Highly tempering infinite matrices. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112(2), 341–345 (2018)
Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014)
Cariello, D., Seoane-Sepúlveda, J.B.: Basic sequences and spaceability in \(\ell _p\) spaces. J. Funct. Anal. 266(6), 3797–3814 (2014)
Ciesielski, K.C., Rodríguez-Vidanes, D.L., Seoane-Sepúlveda, J.B.: Algebras of measurable extendable functions of maximal cardinality. Linear Algebra Appl. 565, 258–266 (2019)
Ciesielski, K.C., Seoane-Sepúlveda, J.B.: A century of Sierpiński-Zygmund functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3863–3901 (2019)
Ciesielski, K.C., Seoane-Sepúlveda, J.B.: Differentiability versus continuity: restriction and extension theorems and monstrous examples. Bull. Am. Math. Soc. (N.S.) 56(2), 211–260 (2019)
Diestel, J.: Geometry of Banach spaces–selected topics. Lecture notes in mathematics, vol. 485, p. xi+282. Springer-Verlag, Berlin (1975)
Enflo, P.H., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366(2), 611–625 (2014)
Fernández-Sánchez, J., Muñoz-Fernández, G.A., Rodríguez-Vidanes, D.L., Seoane-Sepúlveda, J.B.: Obtaining algebrability in subsets of real functions. Publ. Math. Debrecen 96(1–2), 231–244 (2020)
Fernández-Sánchez, J., Seoane-Sepúlveda, J.B., Trutschnig, W.: Lineability, algebrability, and sequences of random variables, Preprint (2020). Accepted for publication in Mathematische Nachrichten
Ferrera, J.: An introduction to nonsmooth analysis. Elsevier, Amsterdam (2014)
Ferrer, J.: Rolle’s theorem fails in \(l_2\). Am. Math. Monthly 103(2), 161–165 (1996)
García, D., Grecu, B.C., Maestre, M., Seoane-Sepúlveda, J.B.: Infinite dimensional Banach spaces of functions with nonlinear properties. Math. Nachr. 283(5), 712–720 (2010)
Gámez-Merino, J.L., Muñoz-Fernández, G.A., Sánchez, V.M., Seoane-Sepúlveda, J.B.: Sierpiński-Zygmund functions and other problems on lineability. Proc. Am. Math. Soc. 138(11), 3863–3876 (2010)
García-Pacheco, F.J., Martín, M., Seoane-Sepúlveda, J.B.: Lineability, spaceability, and algebrability of certain subsets of function spaces. Taiwanese J. Math. 13(4), 1257–1269 (2009)
García-Pacheco, F.J., Palmberg, N., Seoane-Sepúlveda, J.B.: Lineability and algebrability of pathological phenomena in analysis. J. Math. Anal. Appl. 326(2), 929–939 (2007)
Gelbaum, B.R., Olmsted, J.M.H.: Counterexamples in analysis. The Mathesis Series. Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam (1964)
Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. Oxford University Press, Oxford (2008)
Haydon, R.: A counterexample to several questions about scattered compact spaces. Bull. Lond. Math. Soc. 22(3), 261–268 (1990)
Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge, pp. xviii+802 (1995)
Ponce-Campuzano, J.C., Maldonado-Aguilar, M.A.: Vito Volterra’s construction of a nonconstant function with a bounded, non-Riemann integrable derivative. BSHM Bull. 30(2), 143–152 (2015)
Puglisi, D., Seoane-Sepúlveda, J.B.: Bounded linear non-absolutely summing operators. J. Math. Anal. Appl. 338(1), 292–298 (2008)
Seoane-Sepúlveda, J.B.: Chaos and lineability of pathological phenomena in analysis. Thesis (Ph.D.)–Kent State University. ProQuest LLC, Ann Arbor, MI (2006)
Shkarin, S.A.: On the Rolle theorem in infinite-dimensional Banach spaces (Russian); translated from Mat. Zametki 51(3), 128–136 (1992). Math. Notes 51(3–4), 311–317 (1992)
Smith, H.J.S.: On the integration of discontinuous functions. Proc. Lond. Math. Soc. 6, 140–153 (1874/75)
Volterra, V.: Sui principii del calcolo integrale (Italian). Giorn. di Battaglini 19, 333–372 (1881)
Acknowledgements
D.L. Rodríguez-Vidanes and J.B. Seoane–Sepúlveda were supported by Grant PGC2018-097286-B-I00. W. Trutschnig gratefully acknowledges the support of the WISS 2025 project ‘IDA-lab Salzburg’ (20204-WISS/225/197-2019 and 20102-F1901166-KZP)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. S. Moslehian.
Rights and permissions
About this article
Cite this article
Fernández-Sánchez, J., Rodríguez-Vidanes, D.L., Seoane-Sepúlveda, J.B. et al. Lineability, differentiable functions and special derivatives. Banach J. Math. Anal. 15, 18 (2021). https://doi.org/10.1007/s43037-020-00103-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s43037-020-00103-9