Skip to main content
Log in

Boundary behavior of Hardy spaces on angular domains

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to characterize the behavior of boundary limits of functions in Hardy space on angular domains. We investigate that the Cauchy integral of a function \(f\in L^{p}(\partial D_a)\) is in \(H^{p}(D_a).\) We also prove that the functions in \(H^{p}(D_a)\) are the Cauchy integral of their non-tangential boundary limits. In addition, we establish the orthogonality of non-tangential boundary limits of functions in \(H^{p}(D_a)\) and \(H^{q}(D_a)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantinescu, F.: Boundary values of analytic functions. Comm. Math. Phys. 7, 225–233 (1968)

    Article  MathSciNet  Google Scholar 

  2. Deng, G.: Complex Analysis (Chinese). Beijing Normal University Press, Beijing (2010)

    Google Scholar 

  3. Deng, G., Qian, T.: Rational approximation of functions in Hardy spaces. Complex Anal. Oper. Theory 10, 903–920 (2016)

    Article  MathSciNet  Google Scholar 

  4. Garnett, J.: Bounded Holomorphic Functions. Academic Press, London (1987)

    Google Scholar 

  5. Hayman, W., Kennedy, P.: Subharmonic Functons, vol. 1. Academic Press, London (1976)

    Google Scholar 

  6. Krantz, S.: Function Theory of Several Complex Variables. Wiley, New York (1982)

    MATH  Google Scholar 

  7. Li, H., Deng, G., Qian, T.: Hardy space decomposition of \(L^{p}\) on the unit circle: \(0<p\le 1\). Complex Var. Elliptic Equ. 61, 510–523 (2016)

    Article  MathSciNet  Google Scholar 

  8. Liu, R., Deng, G.: Hardy Spaces over Half-strip Domains, preprint, arXiv:1709.04665

  9. Lu, J.: Boundary Value Problems for Analytic Functions. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  10. Qian, T.: Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. J. Integral Equ. Appl. 17, 159–198 (2005)

    Article  MathSciNet  Google Scholar 

  11. Qian, T., Xu, Y., Yan, D., Yan, L., Yu, B.: Fourier spectrum characterization of Hardy spaces and applications. Proc. Am. Math. Soc. 137, 971–980 (2009)

    Article  MathSciNet  Google Scholar 

  12. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Space. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  13. Stein, E., Weiss, G., Weiss, M.: \(H^{p}\) class of holomophic functions in tube domains. Proc. Natl. Acad. Sci. USA 52, 1035–1039 (1964)

    Article  Google Scholar 

  14. Wen, Z., Deng, G.: Further discussion on Hardy space in an angular domain. J. Beijing Normal Univ. (Nat. Sci.) 50, 581–586 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Wen, Z., Deng, G., Qu, F.: Rational function approximation of Hardy space on half strip. Complex Var. Elliptic Equ. 64, 447–460 (2019)

    Article  MathSciNet  Google Scholar 

  16. Wen, Z., Deng, G., Wang, C., Qu, F.: Decomposition of \(L^{p}(\partial D_{a})\) space and boundary value of holomorphic functions. Chin. Ann. Math. Ser. B 38, 1093–1110 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees and the associated editors for their valuable suggestions and insightful comments, which improve the presentation of this paper. This work was carried out when the author was visiting the Department of Mathematics, University of Pittsburgh. The author would like to thank the hospitality of Professor Ming Chen and Professor Dehua Wang. This work was supported by the National Natural Science Foundation of China (no. 11901251), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 17KJD110002) and the Foundation Project of Jiangsu Normal University (no. 16XLR033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Wen.

Additional information

Communicated by Quanhua Xu.

Appendix: The proof of Lemma 2.6

Appendix: The proof of Lemma 2.6

For the convenience of readers, we restate the proof of Lemma 2.6 in this appendix. In [2], the proof is divided into two cases, namely, \(1<p\le 2\) and \(2\le p<\infty \).

We begin with the case \(1<p\le 2\). Assume that f is a nonnegative function with compact support and \(\{t:f(t)\ne 0\}\subseteq [-a,a]\). For simplicity, we denote

$$\begin{aligned} F(z):=Cf(z)=u+iv. \end{aligned}$$

We have \(u>0\) and \(u^{p}, |F|^{p}\in C^{2}({\mathbb {C}}_{+})\). Notice that

$$\begin{aligned} 2\frac{\partial u}{\partial z}=F^{'}, \end{aligned}$$

we thus obtain

$$\begin{aligned} \Delta u^{p}=p(p-1)|F'|^{2}u^{p-2}\ \ \text{ and } \ \ \Delta |F|^{p}=p^{2}|F'|^{2}|F|^{p-2}. \end{aligned}$$

Let

$$\begin{aligned} h(z)=\frac{p}{p-1}(u(z))^{p}-|F(z)|^{p}, \end{aligned}$$

then \(h\in C^{2}({\mathbb {C}}_{+})\) and

$$\begin{aligned} \Delta h(z)=p^{2}|F'|^{2}(u^{p-2}-|F|^{p-2})\ge 0, \end{aligned}$$

which mean h(z) is subharmonic on \({\mathbb {C}}_{+}.\) According to the Minkowski inequality, we have

$$\begin{aligned} \int _{-\infty }^{+\infty }|h(x+iy)|^{p}dx&\le \frac{2p}{p-1}\Vert F_{y}\Vert _{L^p}^p\\&\le \frac{2p}{p-1}\left( \int _{-\infty }^{+\infty }|f(t)|\left( \int _{-\infty }^{+\infty } \frac{1}{|t-x-iy|^p}dx\right) ^{\frac{1}{p}}dt\right) ^p\\&\le (2a)^{\frac{p}{q}}\frac{2p}{p-1}\frac{1}{y^{\frac{p}{q}}}\Vert f\Vert _{L^{p}}^{p} \int _{-\infty }^{+\infty }\frac{1}{(1+s^2)^{\frac{p}{2}}}ds\\&< \infty , \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{p}=1\). Therefore, the function

$$\begin{aligned} \int _{-\infty }^{+\infty }|h(x+iy)|^{p}dx, y\in (0,\infty ) \end{aligned}$$

decreases monotonously to 0 as y tends to \(\infty \). This implies

$$\begin{aligned} \frac{p}{p-1}\int _{-\infty }^{+\infty }(u(x+iy))^{p}dx\ge \int _{-\infty }^{+\infty }|F(x+iy)|^{p}dx=\Vert F_y\Vert _{L^{p}}^{p}. \end{aligned}$$

Moreover,

$$\begin{aligned} \frac{p}{p-1}\Vert f\Vert _{L^{p}}^{p}\ge \Vert Cf\Vert _{H^{p}_1}^{p}. \end{aligned}$$

Let \(1<p\le 2\) and f be the function with compact support and \(f\not \equiv 0\). Suppose that \(\{t:f(t)\ne 0\}\subseteq [-a,a]\). Notice that

$$\begin{aligned} f(z)=P_y*f(x)=P_y*f^{+}(x)-P_y*f^{-}(x), \end{aligned}$$

where \(P_y(x)=\frac{1}{\pi }\frac{y}{x^2+y^2}\) is the Poisson kernel on \({\mathbb {C}}_+,\)\(f^+=\max \{f,0\},\)\( f^-=\max \{0, -f\}\) and \(f*g(x)=\int _{\infty }^{+\infty }f(x-t)g(t)dt.\) Thus both \(P_y*f^{+}\) and \(P_y*f^{-}\) are nonnegative harmonic functions on \({\mathbb {C}}_+\) and

$$\begin{aligned} Cf(z)=Cf^+(z)-Cf^-(z). \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert Cf\Vert _{H^{p}}&\le \Vert Cf^+\Vert _{H^{p}}+\Vert Cf^-\Vert _{H^{p}}\\&\le \left( \frac{p}{p-1}\right) ^{\frac{1}{p}}(\Vert f^+\Vert _{L^{p}}+\Vert f^-\Vert _{L^{p}})\\&\le 2\left( \frac{p}{p-1}\right) ^{\frac{1}{p}}\Vert f\Vert _{L^{p}}. \end{aligned}$$

Now let \(1<p\le 2,\)\(f\in L^{p}\) and \(f\not \equiv 0\). We consider the following cut off functions

$$\begin{aligned} f_{n}(t)=\left\{ \begin{aligned}&f(t), \quad |t|\le n,\\&0, \qquad \ |t|> n. \end{aligned} \right. \end{aligned}$$

We thus obtain

$$\begin{aligned} \Vert f_n-f\Vert _{L^{p}}\rightarrow 0,\quad (n\rightarrow \infty ) \end{aligned}$$

and

$$\begin{aligned} \Vert Cf_n(\cdot +iy)-Cf(\cdot +iy)\Vert _{L^{p}}\rightarrow 0,\quad (n\rightarrow \infty ). \end{aligned}$$

According to the Fatou lemma, we have

$$\begin{aligned} \int _{-\infty }^{+\infty }|Cf(x+iy)|^{p}dx&\le \liminf _{n\rightarrow \infty } \int _{-\infty }^{+\infty }|Cf_{n}(x+iy)|^{p}dx\\&\le \liminf _{n\rightarrow \infty } \frac{p2^p}{p-1}\Vert f_{n}\Vert _{L^{p}}^{p}\\&=\frac{p2^p}{p-1}\Vert f\Vert _{L^{p}}^{p}. \end{aligned}$$

Now we complete the proof of Lemma 2.6 for the case \(1<p\le 2.\)

Let \(2<p<\infty ,\) it is not hard to verify that Cf(z) is holomorphic on \({\mathbb {C}}_{+}\) for \(f\in L^{p}({\mathbb {R}}).\) For any \(y>0\), we denote

$$\begin{aligned} L_{y}(g)=\int _{-\infty }^{+\infty }g(x)\overline{Cf(x+iy)}dx,\ \ g\in L^{q}({\mathbb {R}}). \end{aligned}$$

We thus have

$$\begin{aligned} L_{y}(g)=\int _{-\infty }^{+\infty }\overline{f(t)}Cg(t+iy)dt,\ \ g\in L^{q}({\mathbb {R}}). \end{aligned}$$

Therefore,

$$\begin{aligned} |L_{g}|\le \Vert Cg\Vert _{L^{q}}\Vert f\Vert _{L^{p}}\le 2\left( \frac{p}{p-1}\right) ^{\frac{1}{q}}\Vert f\Vert _{L^{p}}\Vert g\Vert _{L^{q}}. \end{aligned}$$

As a consequence,

$$\begin{aligned} \Vert L_{y}\Vert ^p\le \int _{-\infty }^{+\infty }|Cf(x+iy)|^pdx \le 2^p\left( \frac{p}{p-1}\right) ^{\frac{p}{q}}\Vert f\Vert _{L^{p}}^{p} =2^pp^{p-1}\Vert f\Vert _{L^{p}}^{p}. \end{aligned}$$

We complete the proof of Lemma 2.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Deng, G. Boundary behavior of Hardy spaces on angular domains. Banach J. Math. Anal. 14, 269–289 (2020). https://doi.org/10.1007/s43037-019-00019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-019-00019-z

Keywords

Mathematics Subject Classification

Navigation