Aliev, Z.S.: Basis properties in \(L_p\) of systems of root functions of a spectral problem with spectral parameter in a boundary condition. Differ. Equ. 47, 766–777 (2011)
MathSciNet
Article
Google Scholar
Aliev, Z.S.: On basis properties of root functions of a boundary value problem containing a spectral parameter in the boundary conditions. Dokl. Math. 87, 137–139 (2013)
MathSciNet
Article
Google Scholar
Aliev, Z.S., Dunyamalieva, A.A.: Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions. Differ. Equ. 51, 1249–1266 (2015)
MathSciNet
Article
Google Scholar
Aliev, Z.S., Dunyamalieva, A.A., Mehraliyev, Y.T.: Basis properties in \(L_p\) of root functions of Sturm–Liouville problem with spectral parameter-dependent boundary conditions. Mediterr. J. Math. 14, 1–23 (2017)
Article
Google Scholar
Aliyev, Z.S., Guliyeva, S.B.: Properties of natural frequencies and harmonic bending vibrations of a rod at one end of which is concentrated inertial load. J. Differ. Equ. 263, 5830–5845 (2017)
MathSciNet
Article
Google Scholar
Aliyev, Z.S., Kerimov, N.B.: Spectral properties of the differential operators of the fourth-order with eigenvalue parameter dependent boundary condition. Int. J. Math. Math. Sci. 2012, 456517 (2012)
MathSciNet
Article
Google Scholar
Aliyev, Z.S., Namazov, F.M.: Spectral properties of a fourth-order eigenvalue problem with spectral parameter in the boundary conditions. Electron. J. Differ. Equ. 2017(307), 1–11 (2017)
MathSciNet
MATH
Google Scholar
Aliyev, Z.S., Namazov, F.M.: On the spectral problem arising in the mathematical model of bending vibrations of a homogeneous rod. Complex Anal. Oper. Theory (2019). https://doi.org/10.1007/s11785-019-00924-z
MathSciNet
Article
MATH
Google Scholar
Azizov, T.Y., Iokhvidov, I.S.: Linear operators in Hilbert spaces with \(G\)-metric. Russ. Math. Surv. 26, 45–97 (1971)
MathSciNet
Article
Google Scholar
Amara, J.B., Vladimirov, A.A.: On oscillation of eigenfunctions of a fourth-order problem with spectral parameters in the boundary conditions. J. Math. Sci. 150, 2317–2325 (2008)
MathSciNet
Article
Google Scholar
Banks, D.O., Kurowski, G.J.: A Prufer transformation for the equation of a vibrating beam subject to axial forces. J. Differ. Equ. 24, 57–74 (1977)
MathSciNet
Article
Google Scholar
Binding, P.A., Browne, P.J.: Application of two parameter eigencurves to Sturm–Liouville problems with eigenparameter dependent boundary conditions. Proc. R. Soc. Edinb. Sect. A 125, 1205–1218 (1995)
MathSciNet
Article
Google Scholar
Bolotin, B.B.: Vibrations in technique: handbook in 6 volumes, The vibrations of linear systems. I. Engineering Industry, Moscow (1978) (in Russian)
Fulton, T.: Two-point boundary value problems with eigenvalue parameter in the boundary conditions. Proc. R. Soc. Edinb. Sect. A 77, 293–308 (1977)
MathSciNet
Article
Google Scholar
Il’in, V.A.: Unconditional basis property on a closed interval of systems of eigen-and associated functions of a second-order differential operator. Dokl. Akad. Nauk SSSR 273, 1048–1053 (1983) (in Russian)
Kapustin, N.Y.: On a spectral problem arising in a mathematical model of torsional vibrations of a rod with pulleys at the ends. Differ. Equ. 41, 1490–1492 (2005)
MathSciNet
Article
Google Scholar
Kapustin, N.Y., Moiseev, E.I.: On a spectral problem in theory of parabolic–hyperbolic heat equation. Dokl. Math. 352, 451–454 (1997)
MATH
Google Scholar
Kapustin, N.Y., Moiseev, E.I.: On spectral problems with a spectral parameter in the boundary condition. Differ. Equ. 33, 115–119 (1997)
MathSciNet
MATH
Google Scholar
Kapustin, N.Y., Moiseev, E.I.: On the basis property in the space \(L_p\) of systems of eigenfunctions corresponding to two problems with spectral parameter in the boundary condition. Differ. Equ. 36, 1357–1360 (2000)
MathSciNet
Google Scholar
Kerimov, N.B., Aliyev, Z.S.: The oscillation properties of the boundary value problem with spectral parameter in the boundary condition. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. 25(7), 61–68 (2005)
MathSciNet
Google Scholar
Kerimov, N.B., Aliev, Z.S.: On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in a boundary condition. Differ. Equ. 43, 905–915 (2007)
MathSciNet
Article
Google Scholar
Kerimov, N.B., Poladov, R.G.: Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions. Dokl. Math. 85, 8–13 (2012)
MathSciNet
Article
Google Scholar
Krylov, A.N.: Some differential equations of mathematical physics having applications to technical problems. Academy Sci. USSR, Moscow (1932) (in Russian)
Moiseev, E.I., Kapustin, N.Y.: On singularities of the root space of a spectral problem with spectral parameter in a boundary condition. Dokl. Math. 385, 20–24 (2002)
MathSciNet
MATH
Google Scholar
Naimark, M.A.: Linear Differential Operators. Ungar, New York (1967)
MATH
Google Scholar
Poisson, S.D.: Mémoire sur la Manière d’exprimer les Fonctions par des Séries de quantités périodiques, et sur l’Usage de cette Transformation dans la Resolution de differens Problèmes. École Polytech. 18, 417–489 (1820)
Google Scholar
Ragusa, M.A., Russo, G.: ODEs approaches in modeling brosis Comment on “Towards a unified approach in the modeling of fibrosis: a review with research perspectives” by Martine Ben Amar and Carlo Bianca. Phys. Life Rev. 17, 112–113 (2016)
Article
Google Scholar
Roseau, M.: Vibrations in Mechanical Systems, Analytical Methods and Applications. Springer, Berlin (1987)
Book
Google Scholar
Russakovskii, E.M.: Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions. Funct. Anal. Appl. 9, 358–359 (1975)
Article
Google Scholar
Schneider, A.: A note on eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 136, 163–167 (1974)
MathSciNet
Article
Google Scholar
Timoshenko, S.P.: Strength and vibrations of structural members (Collection of paper; E. I. Grigolyuk, editor). Nauka, Moscow (1975) (in Russian)
Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133, 301–312 (1973)
MathSciNet
Article
Google Scholar