Skip to main content

Existence and uniqueness results for nonlinear fractional differential equations via new Q-function

Abstract

In this paper, we first introduce a new concept of Q-function on partial metric spaces. Also, we give a new definition of \((\alpha ,\phi ,q)\)-contractive mapping by considering the new kind of Q-function. Then we obtain some best proximity point results for such mappings. Thus, we improve and unify many well-known results in the literature. Moreover, we provide some illustrative and nontrivial examples. Therefore, we show that the approach of Haghi et al. (Topol Appl 160:450–454, 2013) cannot be applied to our results. Finally, we obtain a solution of nonlinear fractional differential equations using the new Q-function.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abkar, A., Gabeleh, M.: A note on some best proximity point theorems proved under P-property. Abstr. Appl. Anal. 2013, Article ID 189567 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Al-Homidan, S., Ansari, Q.H., Yao, J.C.: Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal. Theory Methods Appl. 69, 126–139 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Basha, S.S., Veeramani, P.: Best approximations and best proximity pairs. Acta Sci. Math. 63, 289–300 (1997)

    MATH  Google Scholar 

  4. 4.

    Bianchini, R.M., Grandolfi, M.: Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 45, 212–216 (1968)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Chanda, A., Dey, L.K., Radenović, S.: Simulation functions: a survey of recent results. Rev. Real Acad. Cienc. Exact. Físi. Nat. Ser. A. Mat. 113, 2923–2957 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Haghi, R.H., Rezapour, S., Shahzad, N.: Be careful on partial metric fixed point results. Topol. Appl. 160, 450–454 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hitzler, P., Seda, A.: Mathematical Aspects of Logic Programming Semantics. Chapman & Hall/CRC Studies in Informatic Series, CRC Press (2011)

    MATH  Google Scholar 

  8. 8.

    Jleli, M., Samet, B.: Best proximity points for \(\alpha{-}\phi \)-proximal contractive type mappings and application. Bull. Sci. Math. 137, 977–995 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Kadelburg, Z., Nashine, H.K., Radenovic, S.: Coupled fixed points in 0-complete ordered partial metric spaces. J. Adv. Math. Stud. 6, 159–172 (2013)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Kumam, P., Salimi, P., Vetro, C.: Best proximity point results for modified α-proximal C-contraction mappings. Fixed Point Theory Appl. 2014, 1–16 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. 18, 251–266 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Latif, A.A., Abbas, M., Hussain, A.: Coincidence best proximity point of \(F_{\rm g}\)-weak contractive mappings in partially ordered metric spaces. J. Nonlinear Sci. Appl. 9, 2448–2457 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Marín, J., Romaguera, S., Tirado, P.: Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory Appl. 2011, 1–9 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Matthews, S.G.: Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci., vol. 728, pp. 183–197 (1994)

  16. 16.

    Raj, V.S.: Best proximity point theorems for non-self mappings. Fixed Point Theory 14, 447–454 (2013)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Rajić, V.C., Radenović, S., Shatanawi, W., Tahat, N.: Common fixed point results for weakly isotone increasing mappings in partially ordered partial metric spaces. Matematiche (Catania) 68, 191–204 (2013)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Reich, S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Sahin, H., Aslantas, M., Altun, I.: Feng–Liu type approach to best proximity point results for multivalued mappings. J. Fixed Point Theory Appl. 22, 1–13 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha{-}\phi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Shatanawi, W., Karapinar, E., Aydi, H., Fulga, A.: Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations. Univ. Politech. Buchar. Sci. Bull. Ser. A 82, 157–170 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank editor and all anonymous reviewers for their comments, which help to improve the quality of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hakan Sahin.

Additional information

Communicated by Daniel Pellegrino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahin, H. Existence and uniqueness results for nonlinear fractional differential equations via new Q-function. Adv. Oper. Theory 7, 1 (2022). https://doi.org/10.1007/s43036-021-00168-9

Download citation

Keywords

  • Nonlinear fractional differential equations
  • Best proximity point
  • Q-function
  • \(\alpha{-}\phi \)-Contractive

Mathematics Subject Classification

  • 54H25
  • 47H10