Skip to main content

Analogue of slant Hankel operators on the Lebesgue space of n-torus


In this paper, the multivariate analogue of slant Hankel operator on \(L^2(\mathbb {T}^n)\), (\(n\ge 1\), a natural number), the Lebesgue space of square integrable functions defined on \(\mathbb {T}^n\), where \(\mathbb {T}\) is the unit circle, is introduced. Various characterizations are obtained for a bounded operator on \(L^2(\mathbb {T}^n)\)  to be a kth- order slant Hankel operator  (\(k\ge 2\), a fixed integer).

This is a preview of subscription content, access via your institution.


  1. 1.

    Arora, S.C., Batra, R., Singh, M.P.: Slant Hankel operators. Arch. Math. (BRNO) Tomus 42, 125–133 (2006)

  2. 2.

    Cuckovic, Z., Curto, R.: A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space. J. Oper. Theory 79(2), 287–300 (2018)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Datt, G., Pandey, S.K.: Slant Toeplitz operators on Lebesgue space of n-dimensional Torus. Hokkaido Math. J. 49, 363–387 (2020)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Datt, G., Pandey, S.K.: Compression of slant Toeplitz operators on the Hardy space of \(n\)-torus. Czechoslov. Math. J. 70(4), 997–1018 (2020)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Halmos, P.R.: Hilbert Space Problem Book. Van Nostrand, Princeton (1967)

    MATH  Google Scholar 

  6. 6.

    Ho, M.C.: Properties of slant Toeplitz operators. Indiana Univ. Math. J. 45, 843–862 (1996)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ho, M.C., Wong, M.M.: Operators that commute with slant Toeplitz operators. Appl. Math. Res. Express, 20 (2008) (Article ID abn003)

  8. 8.

    Lu, Y.F., Zhang, B.: Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk. J. Math. Res. Expos. 30(2), 205–216 (2010)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Peller, V.V.: An excursion into the theory of Hankel operators. Holomorphic spaces (Berkeley, CA, 1995), 65–120, Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998.

  10. 10.

    Strang, G., Strela, V.: Orthogonal multiwavelets with vanishing moments. Opt. Eng. 33(7), 2104–2107 (1994)

    Article  Google Scholar 

  11. 11.

    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bhawna Bansal Gupta.

Additional information

Communicated by Yuri Karlovich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datt, G., Gupta, B.B. Analogue of slant Hankel operators on the Lebesgue space of n-torus. Adv. Oper. Theory 6, 66 (2021).

Download citation


  • Hankel operator
  • kth-order slant Hankel operator
  • Lebesgue space
  • Slant Hankel operator
  • Slant Toeplitz operator

Mathematics Subject Classification

  • Primary 47B35
  • Secondary 46E30