Skip to main content

Lipschitz p-lattice summing operators

Abstract

In this paper, we introduce and study the notion of Lipschitz p-lattice summing operators in the category of Lipschitz operators which generalizes the class of p-lattice summing operators in the linear case. Some interesting properties are given. Also, some connections with other classes of operators are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arens, R.-F., Eels, J.: On embedding uniform and topological spaces. Pac. J. Math. 6, 397–403 (1956)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Achour, D., Mezrag, L.: Little Grothendieck’s theorem for sublinear operators. J. Math. Anal. Appl. 296, 541–552 (2004)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Achour, D., Mezrag, L.: Sur les opérateurs sous linéaires \(p\)-lattice sommants. An. Univ. Oradea Fasc. Mat. XIV, 237–250 (2007)

    Google Scholar 

  4. 4.

    Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 48. Amer. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  5. 5.

    Cabrera-Padilla, M.-G., Chávez-Domínguez, J.-A., Jiménez-Vargas, A., Villegas-Vallecillos, M.: Lipschitz tensor product. Khayyam J. Math. 1(2), 185–218 (2015)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chávez-Domínguez, J.-A.: Duality for Lipschitz \(p\)-summing operators. J. Funct. Anal. 261(2), 387–407 (2011)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chávez-Domínguez, J.-A.: Lipschitz \((q, p)\)-mixing operators. Proc. Am. Math. Soc. 140, 3101–3115 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Chávez-Domínguez, J.-A.: Lipschitz \(p\)-convex and \(q\)-concave maps. Preprint

  9. 9.

    Chen,D., Zheng, B.: Remarks on Lipschitz \(p\)-summing operators. Proc. Am. Math. Soc. 139(8), 2891–2898 (2011)

  10. 10.

    Chen, D., Zheng, B.: Lipschitz \(p\)-integral operators and Lipschitz \(p\)-nuclear operators. Nonlinear Anal. 75, 5270–5282 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Defant, A., Floret, K.: Tensor Norms and Operator Ideals, North-Holland Math. Stud., vol. 176. North-Holland Publishing Co., Amsterdam (1993)

    MATH  Google Scholar 

  12. 12.

    Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. Springer, Berlin (2011)

    Book  Google Scholar 

  13. 13.

    Schaefer, H.-H.: Banach Lattices and Positive Operators, (Grundlehner der Mathematischen Weissenschaften), vol. 215. Springer, Berlin (1974)

    Book  Google Scholar 

  14. 14.

    Farmer, J.-D., Johnson, W.-B.: Lipschitz \(p\)-summing operators. Proc. Am. Math. Soc. 137(9), 2989–2995 (2009)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kalton, N.-J., Godefroy, G.: Lipschitz-free Banach spaces. Stud. Math. 159, 121–141 (2003)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Johnson, J.-A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Am. Math. Soc. 148, 147–169 (1970)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jiménez-Vargas, A., Sepulcre, J.-M.: Moisés Villegas–Vallecillos, Lipschitz compact operators. J. Math. Anal. Appl. 415(2), 889–901 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kantorovich, L.-V.: On the translocation of masses. Dokl. Akad. Nauk SSSR 37, 227–229 (1942)

    MathSciNet  Google Scholar 

  19. 19.

    Krivine, J.-L.: Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 1973–1974: Espaces \(L_{p}\), applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 22 et 23, Centre de Math., Ecole Polytech., Paris (1974)

  20. 20.

    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I and II. Springer, Berlin (1996)

    MATH  Google Scholar 

  21. 21.

    Mezrag, L.: Little G. T. for \(l_{p}\)-lattice summing operators. Serdica. Math. J. 32, 39–56 (2006)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Mezrag, L., Tallab, A.: On Lipschitz \(\tau (p)\)-summing operators. Colloq. Math. 147(1), 95–114 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Nielson, N.-J.: On Banach ideals determined by Banach lattices and their applications. Diss. Math. (Rozprawy Mat.) CIX, 1–62 (1973)

    MathSciNet  Google Scholar 

  24. 24.

    Nielsen, N.-J., Szulga, J.: \(p\)-Lattice summing operators. Math. Nachr. 119, 219–230 (1984)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Pietsch, A.: Absolut \(p\)-summierende Abbildungen in normierten Räumen. Stud. Math. 28, 333–353 (1967)

    Article  Google Scholar 

  26. 26.

    Pomares, B.-P.: Biduals of \(p\)-lattice summing operators. Extracta Math. 1(3), 136–138 (1986)

    Google Scholar 

  27. 27.

    Saadi, K.: Some properties for Lipschitz strongly \(p\)-summing operators. J. Math. Anal. Appl. 423, 1410–1426 (2015)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Sawashima, I.: Methods of Lipschitz duals. In: Lecture Notes Ec. Math. Sust., vol. 419, pp. 247–259. Springer, Berlin (1975)

    Google Scholar 

  29. 29.

    Szulga, J.: On lattice summing operators. Proc. Am. Math. Soc. 87(2), 258–262 (1983)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Weaver, N.: Lipschitz Algebras, 2nd edn. World Scientific Publishing Co., River Edge (2018)

    Book  Google Scholar 

  31. 31.

    Yahi, R., Achour, D., Rueda, P.: Absolutely summing Lipschitz conjugates. Mediterr. J. Math. 13, 1949–1961 (2016)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Yanovskii, L.-P.: On summing and lattice summing operators and characterizations of AL-spaces. Sibirskii Mat. Zh. 20(2), 401–408 (1979). (in Russian)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the support of the General Direction of Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Maamra.

Additional information

Communicated by Enrique A. Sanchez Perez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maamra, A., Mezrag, L. & Tallab, A. Lipschitz p-lattice summing operators. Adv. Oper. Theory 6, 67 (2021). https://doi.org/10.1007/s43036-021-00161-2

Download citation

Keywords

  • Lipschitz p-summing operators
  • p-Lattice summing operators
  • Concave and convex operators
  • Order bounded operators

Mathematics Subject Classification

  • 46B28
  • 46T99
  • 47H99
  • 47L20