Skip to main content
Log in

Resolvent algebra of finite rank operators

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\mathscr {H}}\) be a Hilbert space. Suppose that \(A\in {\mathbb {B}}({\mathscr {H}})\) and the operators \(I+mA\) are invertible for all integers \(m \ge 1\). We characterize the resolvent algebra

$$\begin{aligned} R_A:= \left\{ T \in {\mathbb {B}}({\mathscr {H}}) : \sup _{m \ge 1}\Vert (I+mA)T(I+mA)^{-1}\Vert < \infty \right\} , \end{aligned}$$

when A is a finite rank operator with \(\mathrm{cov}(A)\ne 0\). Moreover, we determine the elements of \(\{A\}'\) and \(R_A^{c_0}\) and prove that \(R_A = R_A^c = \{A\}'\oplus R_A^{c_0}\), where \(\{A\}'\) is the commutant A and both \(R_A^c\) and \(R_A^{c_0}\) are subclasses of \(R_A\) defined by

$$\begin{aligned} R_A^c = \left\{ T \in R_A : \lim _{m \rightarrow \infty } \Vert (I+mA)T(I+mA)^{-1}\Vert ~ \mathrm {exists} \right\} \end{aligned}$$

and

$$\begin{aligned} R_A^{c_0} = \left\{ T \in R_A^c : \lim _{m \rightarrow \infty } \Vert (I+mA)T(I+mA)^{-1}\Vert =0 \right\} . \end{aligned}$$

We provide a counterexample showing that \(R_A^c= \{A\}'\oplus R_A^{c_0}\) is not true for some compact operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deddens, J. A.: Another description of nest algebras in Hilbert spaces operators. Lecture notes in Mathematics No. 693, Springer, Berlin, 77–86 (1978)

  2. Drissi, D.: Some algebraic operators and the invariant subspace. Complex Anal. Oper. Theory 6, 913–922 (2012)

    Article  MathSciNet  Google Scholar 

  3. Drissi, D., Mashreghi, J.: Resolvent spaces for algebraic operators and applications. J. Math. Anal. Appl. 402, 179–184 (2013)

    Article  MathSciNet  Google Scholar 

  4. Drissi, D., Mbekhta, M.: On the commutant and orbits of conjugation. Proc. Am. Math. Soc. 134, 1099–1106 (2005)

    Article  MathSciNet  Google Scholar 

  5. Drissi, D., Mbekhta, M.: Operators with bounded conjugation orbits. Proc. Am. Math. Soc. 128, 2687–2691 (2000)

    Article  MathSciNet  Google Scholar 

  6. Drissi, D., Mbekhta, M.: Elements with generalized bounded conjugation orbits. Proc. Am. Math. Soc. 129, 2011–2016 (2001)

    Article  MathSciNet  Google Scholar 

  7. Feintuch, A., Markus, A.: On operator algebras determined by a sequence of operator norms. J. Oper. Theory 60, 317–341 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Drissi, D.: Invariant subspaces and m-idempotant operators. Complex Anal. Oper. Theory 7, 1831–1838 (2013)

    Article  MathSciNet  Google Scholar 

  9. Foias, C., Jung, I.B., Ko, E., Pearcy, C.: Spectral decomposablity of rank-one perturbations of normal operators. J. Math. Anal. Appl. 375, 602–609 (2011)

    Article  MathSciNet  Google Scholar 

  10. Foias, C., Jung, I.B., Ko, E., Pearcy, C.: On rank-one perturbations of normal operators. J. Funct. Anal. 253, 628–646 (2007)

    Article  MathSciNet  Google Scholar 

  11. Mustafayev, H.S.: Growth conditions for conjugation orbits of operators on Banach spaces. J. Oper. Theory 74(2), 281–306 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ionascu, E.J.: Rank-one perturbations of diagonal operators. Integral Equ. Oper. Theory 39, 421–440 (2001)

    Article  MathSciNet  Google Scholar 

  13. Karaev, M.T., Mustafayev, H.S.: On some properties of Deddens algebras. Rock. Mt. J. Math. 33, 915–926 (2003)

    Article  MathSciNet  Google Scholar 

  14. Garayev, M.T., Gürdal, M., Tilki, H.: On some Deddens subspaces of Banach algebras. Filomat 32(11), 40614068 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lambert, A., Petrovic, S.: Beyond hyper in variance for compact operators. J. Funct. Anal. 219, 93–108 (2005)

    Article  MathSciNet  Google Scholar 

  16. Williams, J.P.: On a boundedness condition for operators with singleton spectrum. Proc. Am. Math. Soc. 78, 30–32 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eskandari.

Additional information

Communicated by Evgenij Troitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, R., Mirzapour, F. Resolvent algebra of finite rank operators. Adv. Oper. Theory 6, 24 (2021). https://doi.org/10.1007/s43036-020-00119-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-020-00119-w

Keywords

Mathematics Subject Classification

Navigation