Skip to main content
Log in

Triebel–Lizorkin space estimates for evolution equations with structure dissipation

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the generalized wave equations in the homogeneous Triebel–Lizorkin spaces. The long time decay estimates are obtained by the decomposition of the unit, duality property and the multiplier theorems, extending the known results for the generalized wave equations with structure dissipation in the real Hardy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bui, H.-Q., Taibleson, M.: The characterization of the Triebel–Lizorkin spaces for \(p=\infty \). J. Fourier Anal. Appl. 6(5), 537–550 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chen, J., Deng, Q., Ding, Y., Fan, D.: Estimates on fractional power dissipative equations in function spaces. Nonlinear Anal. 75, 2959–2974 (2012)

    Article  MathSciNet  Google Scholar 

  3. Cho, Y.-K.: Continuous characterization of the Triebel–Lizorkin spaces and Fourier multipliers. Bull. Korean Math. Soc. 47(4), 839–857 (2010)

    Article  MathSciNet  Google Scholar 

  4. D’Abbicco, M., Ebert, M.R., Picon, T.: Long time decay estimates in real Hardy spaces for evolution equations with structure dissipation. J. Pseudo Differ. Oper. Appl. 7, 261–293 (2016)

    Article  MathSciNet  Google Scholar 

  5. D’Abbicco, M., Ebert, M.R.: A classification of structural dissipations for evolution operators. Math. Methods Appl. Sci. 39, 2558–2582 (2016)

    Article  MathSciNet  Google Scholar 

  6. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  7. Ikehata, R.: Asymptotic profiles for wave equations with strong damping. J. Differ. Equ. 257, 2159–2177 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254, 3352–3368 (2013)

    Article  MathSciNet  Google Scholar 

  9. Karch, G.: Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Stud. Math. 143, 175–197 (2000)

    Article  MathSciNet  Google Scholar 

  10. Matthes, S., Reissig, M.: Qualitative properties of structurally damped wave models. Eurasian Math. J 3, 84–106 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Miyachi, A.: On some Fourier multipliers of \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 157–179 (1980)

    MathSciNet  MATH  Google Scholar 

  12. Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  Google Scholar 

  13. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985)

    Article  MathSciNet  Google Scholar 

  14. Shibata, Y.: On the rate of decay of solutions to linear viscoelastic equation. Math. Methods Appl. Sci. 23, 203–226 (2000)

    Article  MathSciNet  Google Scholar 

  15. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhauser, Basel (1983)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant nos. 11671363, 11471288, 11601456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashan Fan.

Additional information

Communicated by Mark Veraar.

Appendix

Appendix

Firstly, let us recall the characterization of \(H^{p}(\mathbb {R}^{n})\) using the Riesz transforms. Let \(R_{J},J=(j_{1},\ldots ,j_{s})\in \{0,1,\ldots ,n\}^{s},\) be the generalized Riesz transform of order s,  i.e. the Fourier multiplier transformation \(T_{m}\) with

$$\begin{aligned} m(\xi )=m_{J}(\xi )=\left( -i\frac{\xi _{j_{1}}}{|\xi |}\right) \cdots \left( -i\frac{\xi _{j_{s}}}{|\xi |}\right) \ \ \ \xi \in \mathbb {R}^{n}, \end{aligned}$$
(40)

where the factor \((-i\xi _{j_{1}}/|\xi |)\) shall be replaced by 1 if \(j_i=0,\) where \( i\in \{0,1,\ldots ,n\}\) [11].

With this assumption, we have the following theorem.

Theorem 5

([11]) Let \(p > (n-1)/(n-1+s).\) Then \(f\in L^2(\mathbb {R} ^{n}) \bigcap H^p(\mathbb {R}^{n})\) if and only if \(R_Jf\in L^2(\mathbb {R} ^{n}) \bigcap L^p(\mathbb {R}^{n}) \) for all \(J\in \{0, 1, \ldots , n\}^s;\) and there exist constants C and \(C^{^{\prime }}\) depending only on pn,  and s such that

$$\begin{aligned} C \sum _J \Vert R_J f \Vert _{L^p} \le \Vert f \Vert _{H^p} \le C^{^{\prime }} \Vert R_J f \Vert _{L^p}, \ \ \ \ f\in L^2(\mathbb {R}^{n}) \bigcap H^p(\mathbb {R}^{n}). \end{aligned}$$
(41)

Next, we recall a multiplier theorem of \(H^{p}(\mathbb {R}^{n})\) in [11], where \(\mathcal {M}(H^{p}(\mathbb {R}^{n}))\) denotes the set of all Fourier multipliers on \(H^{p}(\mathbb {R}^{n}).\)

Theorem 6

([11]) Let \(c\ge 0, d\ge 0, 0< p_0 < 2, nd(1/p_0 - 1/2) = c,\) and \(k=\max \{[n(1/p_0 - 1/2)] + 1, [n/2] + 1\}.\) Suppose that \(m \in C^k(\mathbb {R}^n\setminus \{0\}), m(\xi )=0\) if \(|\xi | \ge 1,\) and

$$\begin{aligned} \Big |\big (\frac{\partial }{\partial \xi }\big )^{\alpha }m(\xi )\Big | \le |\xi |^{c}(A|\xi |^{-1-d})^{|\alpha |}, \ \ \ |\alpha | \le k, \end{aligned}$$
(42)

with some constant \(A \ge 1.\) Then \(m \in \mathcal {M}(H^p(\mathbb {R}^n))\) and

$$\begin{aligned} \Vert m\Vert _{\mathcal {M}(H^p(\mathbb {R}^n))} \le C A^{n(1/p - 1/2)}. \end{aligned}$$
(43)

for \(2 \ge p \ge p_0,\) where C is a constant independent of A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Fan, D. Triebel–Lizorkin space estimates for evolution equations with structure dissipation. Adv. Oper. Theory 5, 281–300 (2020). https://doi.org/10.1007/s43036-019-00019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43036-019-00019-8

Keywords

Mathematics Subject Classification

Navigation