Skip to main content
Log in

M-numerical ranges of odd-order tensors based on operators

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we use tensor norm to define M-numerical ranges of odd-order tensors. This notion of numerical range can be useful in the design of fast algorithms for the computation of tensor eigenvalues. Also, we introduce normal tensors based on a product for odd-order tensors. The basic properties of the numerical range of a matrix, such as compactness and convexity, are proved to hold for the M-numerical range of an odd-order tensor. We find the M-numerical range of a normal tensor. Next, we introduce the singular-value decomposition of an odd-order tensor (\(T_M\)-SVD), and then use it to find the M-numerical range of the tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer Assisted Intervention MICCAI (2008), pp. 1–8. Springer, Berlin (2008)

  2. Bonsall, F.F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras. Cambridge University Press, New York (1971)

    Book  Google Scholar 

  3. Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chang, K., Qi, L., Zhang, T.: A survey in the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20, 891–912 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chorianopoulos, C., Karanasios, S., Psarrakos, P.: A definition of numerical range of rectangular matrices. Linear Multilinear Algebra 51, 459–475 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cui, L.B., Chen, C., Li, W., Michael K, N.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016). https://doi.org/10.1080/03081087.2015.1071311

    Article  MathSciNet  MATH  Google Scholar 

  7. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, ..., RN ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  8. Eiermann, M.: Fields of values and iterative methods. Linear Algebra Appl. 180, 167–197 (1993)

    Article  MathSciNet  Google Scholar 

  9. Ke, R., Li, W., Ng, M.K.: Numerical range of tensors. Linear Algebra Appl. 508, 100–132 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kilmer, M., Martin, C.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  11. Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  13. Li, X., Ng, M., Har, Ye, Y.: Hub, authority and relevance scores in multi-relational data for query search. In: The 2012 SIAM International Conference on Data Mining; (2012 Apr 26-28); Anaheim, CA

  14. Li, W., Ng, M.: Some bounds for the spectral radius of nonnegative tensors. Numer. Math. 130, 315–335 (2015)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Cui, L., Ng, M.: The perturbation bound for the perron vector of a transition probability tensor. Numer. Linear Algebra Appl. 20, 985–1000 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lim, L.: Singular values and eigenvalues of tensors: a variational approach. In : Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’ 05), pp. 129–132; (2005 Dec 13-15); Puerto Vallarta

  17. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE Trans. Autom. Control 53, 1096–1107 (2008)

    Article  MathSciNet  Google Scholar 

  19. Pakmanesh, M., Afshin, H.: \(T_M\)-eigenvalues of odd-order tensors. Commun. Appl. Math. Comput. (2021) (Accept)

  20. Pakmanesh, M., Afshin, H.: Numerical ranges of even-order tensor. Banach J. Math. Anal. 15, 59 (2021). https://doi.org/10.1007/s43037-021-00142-w

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbol. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  22. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MathSciNet  Google Scholar 

  23. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 35, 228–238 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensor. J. Comput. Appl. Math. 221, 150–157 (2008)

    Article  MathSciNet  Google Scholar 

  25. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program 118, 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  26. Qi, L., Yu, G., Wu, X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  27. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: International Conference of Machine Learning (ICML) (2005)

  28. Stampfli, J.G., Williams, J.P.: Growth conditions and the numerical range in a Banach algebra. Tohoku Math. J. 20, 417–424 (1968)

    Article  MathSciNet  Google Scholar 

  29. Yang, Q., Yang, Y.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 30, 1236–1250 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Qing-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakmanesh, M., Afshin, H. M-numerical ranges of odd-order tensors based on operators. Ann. Funct. Anal. 13, 37 (2022). https://doi.org/10.1007/s43034-022-00183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-022-00183-8

Keywords

Mathematics Subject Classification

Navigation