Skip to main content
Log in

On approximate phase isometries

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

A map \(f:H\rightarrow K\), where H and K are real Hilbert spaces, is called an \(\varepsilon\)-phase isometry if \(f(0)=0\) and

$$\begin{aligned} \min \{|\Vert f(x)-f(y)\Vert -\Vert x-y\Vert |,|\Vert f(x)-f(y)\Vert -\Vert x+y\Vert |\}\le \varepsilon , \end{aligned}$$

whenever \(x,y\in H\). We prove the following stability property. If f is an \(\varepsilon\)-phase isometry, then there is a linear isometry V and a phase isometry \(\gamma I\), where \(\gamma :H\rightarrow \{-1,1\}\) is a phase mapping and I is the identity, such that \(\Vert V^*f(x)-\gamma (x)x\Vert \le 2\sqrt{2}\varepsilon\) for all \(x\in H\). If f is surjective, then V is surjective and \(\Vert f(x)-\gamma (x)Vx\Vert \le 2\sqrt{2}\varepsilon\) for all \(x\in H\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chevalier, G.: Wigner’s Theorem and Its Generalizations. Handbook of Quantum Logic and Quantum Structures, pp. 429–475. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  2. Huang, X., Tan, D.: Wigner’s theorem in atomic \(L_p\)-spaces \((p>0)\). Publ. Math. Debr. 92, 411–418 (2018)

    Article  Google Scholar 

  3. Huang, X., Tan, D.: Phase-isometries on real normed spaces. J. Math. Anal. Appl. 488(1), 124058 (2020)

    Article  MathSciNet  Google Scholar 

  4. Hyers, D.H., Ulam, S.M.: On approximate isometries. Bull. Am. Math. Soc. 51, 288–292 (1945)

    Article  MathSciNet  Google Scholar 

  5. Ilišević, D., Turnšek, A.: On Wigner’s theorem in strictly convex normed spaces. Publ. Math. Debr. 97, 393–401 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ilišević, D., Omladič, M., Turnšek, A.: Phase-isometries between normed spaces. Linear Algebra Appl. 612, 99–111 (2021)

    Article  MathSciNet  Google Scholar 

  7. Jia, W., Tan, D.: Wigner’s theorem in \({\cal{L}}^\infty (\Gamma )\)-type spaces. Bull. Aust. Math. Soc. 97, 279–284 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jia, W., Tan, D.: Wigner’s theorem in \({\cal{L}}^\infty (\Gamma )\)-type spaces. Bull. Aust. Math. Soc. 123, 835–837 (1993)

    Google Scholar 

  9. Maksa, G., Páles, Z.: Wigner’s theorem revisited. Publ. Math. Debr. 81, 243–249 (2012)

    Article  MathSciNet  Google Scholar 

  10. Omladič, M., Šemrl, P.: On non linear perturbations of isometries. Math. Ann. 303, 617–628 (1995)

    Article  MathSciNet  Google Scholar 

  11. Wang, R., Bugajewski, D.: On normed spaces with the Wigner property. Ann. Funct. Anal. 11, 523–539 (2020)

    Article  MathSciNet  Google Scholar 

  12. Zeng, X., Huang, X.: Phase-isometries between two \(l^p(\Gamma , H)\)-type spaces. Aequat. Math. 94, 793–802 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Aleksej Turnšek was supported in part by the Ministry of Science and Education of Slovenia, Grants J1-8133 and P1-0222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksej Turnšek.

Additional information

Communicated by Jacek Chmielinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turnšek, A. On approximate phase isometries. Ann. Funct. Anal. 13, 18 (2022). https://doi.org/10.1007/s43034-021-00164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00164-3

Keywords

Mathematics Subject Classification

Navigation