Skip to main content
Log in

Functions preserving operator means

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Let \(\sigma\) be a non-trivial operator mean in the sense of Kubo and Ando, and let \(OM_+^1\) be the set of normalized positive operator monotone functions on \((0, \infty )\). In this paper, we study the class of \(\sigma\)-subpreserving functions \(f\in OM_+^1\) satisfying

$$\begin{aligned} f(A\sigma B) \le f(A)\sigma f(B) \end{aligned}$$

for all invertible positive operators A and B. We provide some criteria for f to be trivial, i.e., \(f(t)=1\) or \(f(t)=t\). We also establish characterizations of \(\sigma\)-preserving functions \(f\in OM_+^1\) satisfying

$$\begin{aligned} f(A\sigma B) = f(A)\sigma f(B) \end{aligned}$$

for all invertible positive operators A and B. In particular, when \(\lim _{t\rightarrow 0} (1\sigma t) =0\), the function \(f\in OM_+^1\backslash \{1,t\}\) preserves \(\sigma\) if and only if f and \(1\sigma t\) are representing functions for a weighted harmonic mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T.: Topics on Operator Inequalities. Hokkaido University, Sapporo (1978)

    MATH  Google Scholar 

  2. Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl. 197(198), 113–131 (1994)

    Article  MathSciNet  Google Scholar 

  3. Ando, T., Hiai, F.: Operator log-convex functions and operator means. Math. Ann. 350, 611–630 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  5. Dinh, T.H., Dinh, T.D., Vo, B.K.T.: A new type of operator convexity. Acta Math. Vietnam 43, 595–605 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dinh, T.H., Tikhonov, O.E., Veselova, L.V.: Inequalities for the extended positive part of a von Neumann algebra related to operator-monotone and operator-convex functions. Ann. Funct. Anal. 10(3), 425–432 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gaál, M., Nagy, G.: Preserver problems related to quasi-arithmetic means of invertible positive operators. Integr. Equ. Oper. Theory 90, 7 (2018)

    Article  MathSciNet  Google Scholar 

  8. Fujii, J.I.: Operator means and Range inclusion. Linear Algebra Appl. 170, 137–146 (1992)

    Article  MathSciNet  Google Scholar 

  9. Fujii, J.I., Nakamura, M.: A characterization of the harmonic operator mean as an extension of Ando’s theorem. Sci. Math. Jpn. 63, 205–210 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, Reprint of the Cambridge Math-ematical Library, 1952nd edn. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  11. Hiai, F., Petz, D.: Introduction to Matrix Analysis and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  12. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  13. Molnár, L.: Maps preserving the geometric mean of positive operators. Proc. Am. Math. Soc. 137, 1763–1770 (2009)

    Article  MathSciNet  Google Scholar 

  14. Molnár, L.: Maps preserving general means of positive operators. Electron. J. Linear Algebra 22, 864–874 (2011)

    Article  MathSciNet  Google Scholar 

  15. Molnár, L.: Maps preserving the harmonic mean or the parallel sum of positive operators. Linear Algebra Appl. 430, 3058–3065 (2009)

    Article  MathSciNet  Google Scholar 

  16. Molnár, L.: Maps on positive cones in operator algebras preserving power means. Aequationes Math. 1–20, (2019)

  17. Molnár, L.: Characterizations of Jordan \(*\)-isomorphisms of \(C^*\)-algebras by weighted geometric mean related operations and quantities. Linear Algebra Appl. 588, 364–390 (2020)

    Article  MathSciNet  Google Scholar 

  18. Nakamura, Y.: Classes of operator monotone functions and Stieltjes functions, In: H. Dym, et al. (Eds.), The Gohberg Anniversary Collection, vol. II, Oper. Theory Adv. Appl., 395–404, vol. 41, Birkhäuser (1989)

  19. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)

    Article  MathSciNet  Google Scholar 

  20. Udagawa, Y., Yamazaki, T., Yanagida, M.: Some properties of weighted operatore means and charcterizations of interpolational means. Linear Algebra Appl. 517, 217–234 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the second author is partially supported by JSPS KAKENHI Grant number JP17K05285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Hoa Dinh.

Additional information

Communicated by Takeaki Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.H., Osaka, H. & Wada, S. Functions preserving operator means. Ann. Funct. Anal. 11, 1203–1219 (2020). https://doi.org/10.1007/s43034-020-00080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43034-020-00080-y

Keywords

Mathematics Subject Classification

Navigation