Skip to main content
Log in

Maximal Schrödinger operators with complex time

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

For \(\gamma >0\) and \(a>0,\) the operator \(P_{a,\gamma }^{t}f\) of Schrödinger type with complex time is defined by

$$\begin{aligned} P_{a,\gamma }^{t}f(x)=S_{a}^{t+it^{\gamma }}f(x) =\int _{{\mathbb {R}}} e^{ix\xi }e^{it|\xi |^{a}}e^{-t^{\gamma }|\xi |^{a}} {\hat{f}}(\xi )d\xi , \end{aligned}$$

and the corresponding maximal operator \(P_{a,\gamma }^{*}\) is defined by

$$\begin{aligned} P_{a,\gamma }^{*}f(x) =\displaystyle \sup _{0<t<1}|P_{a,\gamma }^{t}f(x)|,\quad x\in {\mathbb {R}}. \end{aligned}$$

When \(0<a<1\) and \(\gamma >1,\) some characterization of the global \(L^{2}\) estimate for the maximal operator \(P_{a,\gamma }^{*}\) is obtained. The authors extend the results of the maximal operator \(P_{a,\gamma }^{*}\) for \(a>1\) and \(\gamma >1\) in Bailey (Rev. Mat. Iberoam 29: 531-546, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, A.D.: Boundedness of maximal operators of Schrödinger type with complex time. Rev. Mat. Iberoam. 29, 531–546 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: On the Schrödinger maximal functionin higher dimension. Proc. Steklov Inst. Math. 280, 46–60 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math. 130, 393–396 (2016)

    Article  MathSciNet  Google Scholar 

  4. Carleson, L.: Some analytical problems related to statistical mechanics. In: Euclidean Harmonic Analysis. Lecture Notes in Math., vol. 779, pp. 5–45. Springer, Berlin (1979)

  5. Dahlberg, B., Kenig, C.: A note on the almost everywhere behaviour of solutions to the Schrödinger equation. In: Harmonic Analysis. Lecture Notes in Math., vol. 908, pp. 205–209. Springer, Berlin (1982)

  6. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \({\mathbb{R}}^{2}\). Ann. Math. 186, 607–640 (2017)

    Article  MathSciNet  Google Scholar 

  7. Du, X., Zhang, R.: Sharp \(L^{2}\) estimate of Schrödinger maximal function in higher dimensions. Ann. Math. 189, 837–861 (2019)

    Article  MathSciNet  Google Scholar 

  8. Lee, S.: On pointwise convergence of the solutions to Schrödinger equations in \({\mathbb{R}}^{2}\). Int. Math. Res. Not. 2006, 32597 (2006)

    MATH  Google Scholar 

  9. Sjölin, P.: Convolution with oscillating kernels. Indiana Univ. Math. J. 30, 47–55 (1981)

    Article  MathSciNet  Google Scholar 

  10. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55, 699–715 (1987)

    Article  MathSciNet  Google Scholar 

  11. Sjölin, P.: Global maximal estimates for solutions to the Schrödinger equation. Stud. Math. 110, 105–114 (1994)

    Article  Google Scholar 

  12. Sjölin, P.: Maximal operators of Schrödinger type with a complex parameter. Math. Scand. 105, 121–133 (2009)

    Article  MathSciNet  Google Scholar 

  13. Sjölin, P., Soria, F.: A note on Schrödinger maximal operators with a complex parameter. J. Austral. Math. Soc. 88, 405–412 (2010)

    Article  Google Scholar 

  14. Stein, E.M.: Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis. Ann. Math. Stud., vol. 112, pp. 307–355. Princeton University Press, Princeton (1986)

  15. Tao, T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003)

    Article  MathSciNet  Google Scholar 

  16. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102, 874–878 (1988)

    MATH  Google Scholar 

  17. Vega, L.: El Multiplicador de Schrödinger: la Función Maximal y los Operadores de Restricción (The Schrödinger Multiplier: the Maximal Function and the Restriction Operators - in Spanish), Ph.D. Thesis, Universidad Autónoma de Madrid (1988)

  18. Walther, B.: Maximal estimates for oscillatory integrals with concave phase, Harmonic analysis and operator theory(Caracas,1994), Contemp. Math. vol. 189, 485–495. Amer. Math.Soc., Providence (1995)

  19. Walther, B.: Estimates with global range for oscillatory integrals with concave phase. Colloq. Math. 91, 157–165 (2002)

    Article  MathSciNet  Google Scholar 

  20. Walther, B.: Global range estimates for maximal oscillatory integrals with radial test functions. Ill. J. Math. 56, 521–532 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referees for their very careful reading, important comments and valuable suggestions. The work is supported by NSFC (Nos. 11661061, 11561062, 11761054), Inner Mongolia University scientific research projects (Nos. NJZY17289, NJZY19186), and the natural science foundation of Inner Mongolia (No. 2019MS01003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Niu.

Additional information

Communicated by Feng Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Xue, Y. Maximal Schrödinger operators with complex time. Ann. Funct. Anal. 11, 662–679 (2020). https://doi.org/10.1007/s43034-019-00046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43034-019-00046-9

Keywords

Mathematics Subject Classification

Navigation