Skip to main content
Log in

Inequalities of the Wasserstein mean with other matrix means

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Recently, a new Riemannian metric and a least squares mean of positive definite matrices have been introduced. They are called the Bures–Wasserstein metric and Wasserstein mean, which are different from the Riemannian trace metric and Karcher mean. In this paper we find relationships of the Wasserstein mean with other matrix means such as the power means, harmonic mean, and Karcher mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. Appl. 43, 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J.A., Matran, C.: A fixed point approach to barycenters in Wasserstein spaces. J. Math. Anal. Appl. 441, 744–762 (2016)

    Article  MathSciNet  Google Scholar 

  3. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  Google Scholar 

  4. Bhatia, R.: Positive Definite Matrices, Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    Google Scholar 

  5. Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bhatia, R., Jain, T., Lim, Y.: On the Bures-Wasserstein distance between positive definite matrices. Expo. Math. 37(2), 165–191 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bhatia, R., Jain, T., Lim, Y.: Inequalities for the Wasserstein mean of positive definite matrices. Linear Algebra Appl. 576, 108–123 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bhatia, R., Lim, Y., Yamazaki, T.: Some norm inequalities for matrix means. Linear Algebra Appl. 501, 112–122 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fujii, J.I., Fujii, M., Nakamura, M., Pečarić, J., Seo, Y.: A reverse inequality for the weighted geometric mean due to Lawson–Lim. Linear Algebra Appl. 427, 272–284 (2007)

    Article  MathSciNet  Google Scholar 

  10. Hansen, F., Pedersen, G.K.: Jensens inequality for operators and Löwners theorem. Math. Ann. 258, 229241 (1982)

    Article  Google Scholar 

  11. Hiai, F., Lim, Y.: Geometric mean flows and the Cartan barycenter on the Wasserstein space over positive definite matrices. Linear Algebra Appl. 533, 118–131 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hwang, J., Kim, S.: Bounds for the Wasserstein mean with applications to the Lie–Trotter mean. J. Math. Anal. Appl. 475, 1744–1753 (2019)

    Article  MathSciNet  Google Scholar 

  13. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  Google Scholar 

  14. Kim, S., Lim, Y.: A converse inequality of higher order weighted arithmetic and geometric means of positive definite operators. Linear Algebra Appl. 426, 490–496 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lawson, J., Lim, Y.: Karcher means and Karcher equations of positive definite operators. Trans. Am. Math. Soc. Ser. B 1, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  16. Lim, Y., Pálfia, M.: Matrix power mean and the Karcher mean. J. Funct. Anal. 262, 1498–1514 (2012)

    Article  MathSciNet  Google Scholar 

  17. Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  MathSciNet  Google Scholar 

  18. Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), pp. 357–390, Contemp. Math., vol. 338. Amer. Math. Soc., Providence (2003)

Download references

Acknowledgements

The work of S. Kim was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF-2018R1C1B6001394). The work of H. Lee was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MIST) (No. NRF-2018R1D1A1B07049948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosoo Lee.

Additional information

Communicated by Takeaki Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, H. Inequalities of the Wasserstein mean with other matrix means. Ann. Funct. Anal. 11, 194–207 (2020). https://doi.org/10.1007/s43034-019-00025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43034-019-00025-0

Keywords

Mathematics Subject Classification

Navigation