Skip to main content
Log in

ARID1A in Gynecologic Precancers and Cancers

  • Gynecologic Oncology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable for this Article Type (Review).

Code Availability

Not Applicable for this Article Type (Review).

References

  1. Roberts CW, Orkin SH. The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer. 2004;4(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  2. Wu RC, Wang TL, Shih IM. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther. 2014;15(6):655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mullen J, et al. Targeting ARID1A mutations in cancer. Cancer Treat Rev. 2021;100:102287.

    Article  CAS  PubMed  Google Scholar 

  4. Heinze K, et al. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8(+) TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol. 2022;256(4):388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  6. Gao J, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

  7. de Bruijn I, et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023;83(23):3861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jones S, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang H, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22(11):2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim YB, et al. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int J Cancer. 2019;145(4):916–26.

    Article  CAS  PubMed  Google Scholar 

  11. Sun D, et al. Multiomics analysis revealed the mechanisms related to the enhancement of proliferation, metastasis and EGFR-TKI resistance in EGFR-mutant LUAD with ARID1A deficiency. Cell Commun Signal. 2023;21(1):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee SH, et al. ARID1A mutation from targeted next-generation sequencing predicts primary resistance to gemcitabine and cisplatin chemotherapy in advanced biliary tract cancer. Cancer Res Treat. 2023;55(4):1291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itamochi H, et al. Loss of ARID1A expression is associated with poor prognosis in patients with stage I/II clear cell carcinoma of the ovary. Int J Clin Oncol. 2015;20(5):967–73.

    Article  CAS  PubMed  Google Scholar 

  14. Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev. 2023;42(2):455–70.

    Article  PubMed  PubMed Central  Google Scholar 

  15. He S, et al. Structure of nucleosome-bound human BAF complex. Science. 2020;367(6480):875–81.

    Article  CAS  PubMed  Google Scholar 

  16. Mardinian K, et al. SMARCA4: implications of an altered chromatin-remodeling gene for cancer development and therapy. Mol Cancer Ther. 2021;20(12):2341–51.

    Article  CAS  PubMed  Google Scholar 

  17. Yu C, et al. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat Commun. 2022;13(1):3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang L, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018;563(7730):265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen J, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mengoli V, et al. WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures. EMBO J. 2023;42(3):e111998.

    Article  CAS  PubMed  Google Scholar 

  21. Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71(21):6718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun X, et al. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell. 2017;32(5): p. 574–589.e6.

  23. Suryo Rahmanto Y, et al. Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat Commun. 2020;11(1):2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mao TL, Shih IM. The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 2013;24(4):376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, et al. Chromatin remodelling molecule ARID1A determines metastatic heterogeneity in triple-negative breast cancer by competitively binding to YAP. Cancers (Basel), 2023;15(9).

  26. Megino-Luque C, et al. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol. 2022;16(11):2235–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takahashi K, et al. Treatment strategies for ARID1A-deficient ovarian clear cell carcinoma. Cancers (Basel). 2021;13(8).

  28. Katagiri A, et al. Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol. 2012;25(2):282–8.

    Article  CAS  PubMed  Google Scholar 

  29. Luo Q, et al. ARID1A ablation leads to multiple drug resistance in ovarian cancer via transcriptional activation of MRP2. Cancer Lett. 2018;427:9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Wu S, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. World Health Organization. Endometriosis. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/endometriosis. Cited 2023 July.

  32. Gadducci A, et al. Clear cell carcinoma of the ovary: Epidemiology, pathological and biological features, treatment options and clinical outcomes. Gynecol Oncol. 2021;162(3):741–50.

    Article  PubMed  Google Scholar 

  33. Fonseca MAS, et al. Single-cell transcriptomic analysis of endometriosis. Nat Genet. 2023;55(2):255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anglesio MS, et al. Cancer-Associated Mutations in Endometriosis without Cancer. N Engl J Med. 2017;376(19):1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Faizan U, Muppidi V. Uterine cancer. Treasure Island, FL: StatPearls 2023.

  36. Li L, et al. Genome-wide mutation analysis in precancerous lesions of endometrial carcinoma. J Pathol. 2021;253(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  37. Asaka S, et al. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol. 2023;36(2):100045.

    Article  PubMed  Google Scholar 

  38. Matsuzaki S, et al. Uterine carcinosarcoma: Contemporary clinical summary, molecular updates, and future research opportunity. Gynecol Oncol. 2021;160(2):586–601.

    Article  CAS  PubMed  Google Scholar 

  39. Leskela S, et al. Molecular basis of tumor heterogeneity in endometrial carcinosarcoma. Cancers (Basel). 2019;11(7).

  40. Moreira-Barros J, Huang KG, Tsai TH. Radiation-Induced Uterine Carcinosarcoma after Concurrent Chemoradiotherapy for Cervical Squamous Cell Carcinoma. Rev Bras Ginecol Obstet. 2018;40(12):800–2.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kahraman K, et al. Uterine carcinosarcoma associated with pelvic radiotherapy for sacral chordoma: a case report. Taiwan J Obstet Gynecol. 2012;51(1):89–92.

    Article  PubMed  Google Scholar 

  42. Ahmed TB, et al. Radiotherapy-induced uterine cacinosarcoma: A case report and review of the literature. Int J Surg Case Rep. 2022;94:106977.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matsuo K, et al. Trends of uterine carcinosarcoma in the United States. J Gynecol Oncol. 2018;29(2):e22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gao F, et al. ARID1A-mutated cervical cancer depends on the activation of YAP signaling. Front Biosci (Landmark Ed). 2021;26(12):1411–21.

    Article  CAS  PubMed  Google Scholar 

  45. Li J, et al. The differences in immune features and genomic profiling between squamous cell carcinoma and adenocarcinoma - A multi-center study in Chinese patients with uterine cervical cancer. Gynecol Oncol. 2023;175:133–41.

    Article  CAS  PubMed  Google Scholar 

  46. Wen H, et al. Genomic Profiling of Chinese Cervical Cancer Patients Reveals Prevalence of DNA Damage Repair Gene Alterations and Related Hypoxia Feature. Front Oncol. 2021;11:792003.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao J, et al. HPV infection associated DNA damage correlated with cervical precancerous lesions and cancer in the highest area of cervical cancer mortality, Longnan. China Cancer Manag Res. 2019;11:7197–210.

    Article  CAS  PubMed  Google Scholar 

  48. Ruiz FJ, et al. Genomic characterization and therapeutic targeting of HPV undetected cervical carcinomas. Cancers (Basel). 2021;13(18).

  49. Luo Q, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981–97.

    Article  CAS  PubMed  Google Scholar 

  50. Egger EK, et al. Diagnostic and Therapeutic Approach in a Metastatic Vaginal Adenocarcinoma: A Case Report. Front Immunol. 2021;12:686879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang X, et al. Vaginal Squamous Cell Carcinoma Develops in Mice with Conditional Arid1a Loss and Gain of Oncogenic Kras Driven by Progesterone Receptor Cre. Am J Pathol. 2021;191(7):1281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raffone A, et al. Diagnostic and prognostic value of ARID1A in endometrial hyperplasia: a novel marker of occult cancer. APMIS. 2019;127(9):597–606.

    Article  CAS  PubMed  Google Scholar 

  53. Yokoyama Y, et al. Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer. J Gynecol Oncol. 2014;25(1):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park Y, et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP Inhibitor therapy. Clin Cancer Res. 2019;25(18):5584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu S, et al. Selective vulnerability of ARID1A deficient colon cancer cells to combined radiation and ATR-inhibitor therapy. Front Oncol. 2022;12:999626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li JL, Soble Z, Baro W, Lee M, Damast H, Contessa S, Huang JG. ARID1A deficiency as a biomarker for sensitivity to radiation and ATR inhibition. In: Abstracts of the 2022 Society of Gynecologic Oncology Annual Meeting. 2022.

  57. Andrade D, et al. HuR reduces radiation-induced DNA damage by enhancing expression of ARID1A. Cancers (Basel). 2019;11(12).

  58. Allo G, et al. ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol. 2014;27(2):255–61.

    Article  CAS  PubMed  Google Scholar 

  59. Goel S, et al. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018;28(11):911–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Q, et al. INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors. Cancer Discov. 2022;12(2):356–71.

    Article  CAS  PubMed  Google Scholar 

  61. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berns K, et al. Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance. Clin Cancer Res. 2016;22(21):5238–48.

    Article  CAS  PubMed  Google Scholar 

  63. Silva-Oliveira R, et al. Clinical significance of ARID1A and ANXA1 in HER-2 positive breast cancer. J Clin Med, 2020;9(12).

  64. Mo J, et al. A novel defined risk signature of endoplasmic reticulum stress-related genes for predicting the prognosis and immune infiltration status of ovarian cancer. J Zhejiang Univ Sci B. 2023;24(1):64–77.

    Article  CAS  PubMed  Google Scholar 

  65. Shishova A, et al. Enteroviruses manipulate the unfolded protein response through multifaceted deregulation of the Ire1-Xbp1 pathway. Viruses. 2022;14(11).

  66. Zundell JA, et al. Targeting the IRE1alpha/XBP1 Endoplasmic Reticulum Stress Response Pathway in ARID1A-Mutant Ovarian Cancers. Cancer Res. 2021;81(20):5325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng M, et al. The mitochondrial PHB2/OMA1/DELE1 pathway cooperates with endoplasmic reticulum stress to facilitate the response to chemotherapeutics in ovarian cancer. Int J Mol Sci. 2022;23(3).

  68. Lin J, et al. Targeting the IRE1alpha/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12(1):5321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Velayutham M, et al. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists. Front Oncol. 2018;8:97.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Santagata S, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A. 2011;108(45):18378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pasqua AE, et al. HSF1 Pathway Inhibitor Clinical Candidate (CCT361814/NXP800) Developed from a Phenotypic Screen as a Potential Treatment for Refractory Ovarian Cancer and Other Malignancies. J Med Chem. 2023;66(8):5907–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stewart JR, Poradosu E, Woods A, Shemesh S, Clarke P, Te Poele R, Workman P, Banerjee S. 8P NXP800 versus cisplatin in ARID1a-mutated ovarian clear cell carcinoma xenograft models. ESMO Open. 2023;8(1, Suppl 1):100862.

  73. Banerjee S, et al. ATARI trial: ATR inhibitor in combination with olaparib in gynecological cancers with ARID1A loss or no loss (ENGOT/GYN1/NCRI). Int J Gynecol Cancer. 2021;31(11):1471–5.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Williamson CT, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 2016;7:13837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berns K, et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene. 2018;37(33):4611–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duska LR, et al. Phase IIa Study of PLX2853 in Gynecologic Cancers With Known ARID1A Mutation and Phase Ib/IIa Study of PLX2853/Carboplatin in Platinum-Resistant Epithelial Ovarian Cancer. JCO Precis Oncol. 2023;7:e2300235.

    Article  PubMed  Google Scholar 

  77. Ogiwara H, et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell. 2019;35(2): 177–190.e8.

  78. Gan L, et al. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res. 2018;6:10.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bitler BG, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  80. Zheng D, et al. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B. 2023;13(7):2826–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lheureux S, et al. A Clinical and Molecular Phase II Trial of Oral ENMD-2076 in Ovarian Clear Cell Carcinoma (OCCC): A Study of the Princess Margaret Phase II Consortium. Clin Cancer Res. 2018;24(24):6168–74.

    Article  CAS  PubMed  Google Scholar 

  82. Li J, et al. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J Clin Invest. 2020;130(5):2712–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marabelle A, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353–65.

    Article  CAS  PubMed  Google Scholar 

  84. Lin YC, et al. Complete remission of heavily treated ovarian clear cell carcinoma with ARID1A mutations after pembrolizumab and bevacizumab combination therapy: a case report. J Ovarian Res. 2020;13(1):143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kao CH, et al. Case report: Durable response after pembrolizumab in combination with radiation - induced abscopal effect in platinum - refractory metastatic endometrial clear cell carcinoma. Front Immunol. 2022;13:1079253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao M, Li W. Metabolism-associated molecular classification of uterine corpus endometrial carcinoma. Front Genet. 2023;14:955466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ji C, He Y, Wang Y. Identification of necroptosis subtypes and development of necroptosis-related risk score model for in ovarian cancer. Front Genet. 2022;13:1043870.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lai W, et al. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet. 2023;14:1067666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Adebayo N, et al. Tackling gynecologic cancer disparities: an assessment of 2 interventions for improving information exchange with racial/ethnic communities. Clin Obstet Gynecol. 2023;66(1):43–52.

    Article  PubMed  Google Scholar 

  90. Arend RC, et al. Systematic next generation sequencing is feasible in clinical practice and identifies opportunities for targeted therapy in women with uterine cancer: results from a prospective cohort study. Gynecol Oncol. 2021;163(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  91. Wilhite AM, et al. Molecular profiles of endometrial cancer tumors among Black patients. Gynecol Oncol. 2022;166(1):108–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by DOD Ovarian Cancer Research Program Award W81XWH-16-1-0196 to G.S.H. and NCI P30CA016359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria S. Huang.

Ethics declarations

Ethics Approval

Not Applicable for this Article Type (Review).

Consent to Participate

Not Applicable for this Article Type (Review).

Consent for Publication

Not Applicable for this Article Type (Review).

Conflicts of Interest

G.S.H. is the Inventor on U.S. Patent 17102992 for Targeting of ARID1A-Deficient Cancers. G.S.H. has received consulting fees from Glaxo Smith Kline and AstraZeneca, outside of the scope of this work.

Competing Interests

The other authors (J. M., N. J., Z.S.) have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, J.E., Jaferi, N., Shonibare, Z. et al. ARID1A in Gynecologic Precancers and Cancers. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01585-w

Keywords

Navigation